
Hello and welcome!
My name is Natalya Tatarchuk, and I am a Graphics Engineering architect at Bungie, a
video game company. Today we will be talking about Applied Graphics Research for
Video Games: Solving Real-World Problems under Real-World Constraints.

1

Which brings us to this question.. What makes video games special? At least when
we’re talking about graphics research?
Let’s take a look at the current trends in video game development.

14

If we look back, waaay back, Halo Combat Evolved had actually a good resume of
individual graphics features: Terrain system, foliage, water, ice, snow, particle effects,
simple flag simulation, vehicles.

15

These early game features were fairly fixed-function. That made sense – it’s a good
route for small project – don’t overgeneralize without need.
They were cheap to implement, were fast, and relatively easy to test. However, they
were not expressive, and had limited functionality and art controllability.
But we’ve come a long way from there to now…

16

In the current world of player expectations, for AAA blockbuster games (just like
movies), the expectations have risen drastically.
Technology has been progressing by leaps in the last decade or so and consumers
expect modern games to showcase their capabilities accordingly.

17

Players have increased expectation of visual quality, independent of genre. This
means high-quality lighting and shadows in real-time, high-quality cinematic
postprocessing (blurs, depth of field, etc.).

18

At the same time, consumers expect a leap in immersion for games, which means
increased fidelity. This includes increased resolution, larger destinations, denser and
more diverse environments.

19

Players crave non-linear gameplay. Worlds that evolve and would always give the
players new reasons to come back for more gameplay and adventure. What this
means is that rather than building a singular experience a player can experience once,
game developers wish to build content that players can explore on their own over
and over again.

20

To make these non-linear game worlds work, we need dynamic environments. This
means supporting in real-time dynamic time of day, weather elements, such as rain,
snow, wind, etc. AAA blockbuster games in the latest years have large destinations,
with diverse environments, lush vegetation. This means that the latest video games
pack many more features and these features are far more diverse – they are no
longer fixed function.

22

To make all of the above work, it is important that the control of the creation is
shifted to the hands of content creators - the artists, designers and animators. Most
of the AAA houses have about a third or less of their workforce consist of engineers
and the vast majority of the company is made up from artists, animators and
designers. This means that the features we provide must provide a great deal of art
controllability, have intuitive controls and must be robust and sufficiently express
complex phenomena.

23

To make the game worlds feel immersive, they need varied, consistent and complex
simulations across variety of game systems and graphics features. We can’t make our
world feel truly dynamic if the elements do not convey the response to player
actions. But this also means that it’s not enough to have just a single elements. You
must make all systems simulate dynamically, together.

For example, in this scene, the player is moving around, aiming, and performing
gameplay actions. We see cloth simulation responding to that, the grass movement
responds to the player walking through, water ripples and splashes.

24

Making all these systems play well together incurs additional tax for each individual
feature as they now need to be designed not in isolation, but in correspondence to
the other features in our game worlds.
For example, shadows, global illumination, occlusion, translucence, etc. must handle
time of day. All elements in the world need to go through the same path (for
example, lighting environment) to be consistent in all situations. It’s harder to get
away with custom hacks (the crutch of our earlier development).

25

This, combined with the sheer amount of content needed for high-quality experience,
means that requiring custom tuning of parameters to make your algorithm work is an
utterly unrealistic expectation, and often is simply not doable.
What does it mean to tune cascade shadow split for individual levels when you have
dynamic time of day?
Which time of day should we set the split value for? What about tuning shadow
distances – accounting for time of day, or accounting for varied viewpoints from the
player? What about tuning when you have dynamic weather? This also means that
the features themselves must be robust to varied input.

26

Thus a call to research – consider these requirements! The good news is that they
make for more interesting problems! Of course, that this adds complexity for
otherwise stand-alone techniques, so this request is by no means required, but
considering this requirement only serves to improve the algorithms – and increases
the chances of production adopting them.

27

Creating fully dynamic worlds also has an impact on test and performance
optimization. Games must ship with predictable performance in order to provide a
good experience to the player. Combining dynamic elements with non-linear
gameplay and player-driven customization means that the amount of testing
increases exponentially. In Destiny, we had to test the entire matrix of our
destinations, with all of the activities, with all of the different permutations of gear,
on all of our shipping platforms.

28

And we had to test that full matrix EVERY time major features were implemented or
content re-work completed. Testing this thoroughly may be an overkill to some, but
as recent rough launches show, it pays off when your players are having fun playing
your game instead of experiencing poor perf or continuous online problems.

29

And let’s not forget that game development is, first and foremost, all about iteration.
We implement features, design levels, concept characters, bring them to life only to
realize that something isn’t quite right, and then iterate, iterate, iterate! Artists and
design create iteratively. This of course means continuous re-evaluation and re-
testing. That’s another reason why magic numbers are so intractable in real world
constraints

30

Having many dynamic elements (TOD, weather, destruction, etc.) also puts a tax on
performance optimization as the amount of variables explodes. We need to account
for dynamic conditions and find the worst combinations to know that the
performance will be predictably bounded in a safe bracket suitable for the gameplay
input latency we have set out to achieve.
To help this, we must establish predictable performance budgets for our features and
content. This means that we need to know the behavior of algorithms across varied
conditions. Is there a worst-case scenario that absolutely tanks performance? If yes,
we might not be able to use it.

31

As I mentioned earlier, we need a great deal more content to have dynamic worlds
with non-linear gameplay. When we look at the fidelity of the destinations AAA titles
are striving to ship now, creating unique assets for all of the gameplay goals is
impractical, even for game companies with large production teams. We have to re-
use content effectively. This means that game developers invest in algorithms and
tools pipelines that help proceduralize content creation, for example, automatic
population of decorator locations based on painted importance information, etc. This
is another reason why many have turned toward heavy customization pipelines which
allow create vast variety of content based on componentized building blocks.

32

When we look at the sheer amount of content AAA games need to create, it becomes
very clear that we must empower the artists to own end-to-end results for their
work. We need to empower the authoring improvements where we can (artists
would love it if they could truly rid of Uvs forever for real-time). But we also have to
consider that the content has to be created with specific platforms in mind. And this
is true for analysis of content for performance behavior.

33

We firmly believe that empowering artists to be able to change their assets as quickly
as possible without having to involve an engineer makes development loop far faster
overall. By the time we the graphics engineers would load a level into a GPU profiler
tool and take a look to see which feature “cost” too much, several hours may have
gone by. But if an artist could just take a look at some visualization mode and
understand the cause of the problematic performance issue, they can simply change
the content on the spot. Thus we have invested and will continue to invest into
algorithms to visualize performance-critical data in artist-actionable ways

34

Let’s take a quick look of an example of how this worked in our game. Here is the
default view from one of our levels in the game

35

We can start from the obvious choices such as on-screen geometry budgets to show
the number of vertices, drawcalls, etc. (actual numbers are hard to see but you get
the idea). These budgets are developed with specific platforms in mind.

36

And add in-game visualization modes for other properties – for example, the
overdraw mode helps artists control transparent elements performance by limiting
overdraw for foliage and other transparents (directly correllating to performance of
those elements in our pipeline). We have a similar mode for visualizing lights
overdraw mode which helps lighting artists evaluate performance cost for their
lighting setup.

37

Some of the other displays we added were texture size display which allowed the
artists to see if they’re killing texture cache unnecessarily (for example, maybe your
object didn’t need a 1K texture because you never see it very closely)

38

Or even a mip used display, so that you can see what MIP levels were actually
perceivable in game (and maybe cut down on memory requirements by reducing
textures)
And many more (runtime pixel cost, triange / drawcall visualization, etc.)

39

So when developing graphics techniques we always must think – how will we
communicate the implications of the algorithms for content authoring choices to help
content creators generate good, usable and performant content. We should always
think – what aspects of our algorithms do we want to expose to communicate to art
visually the important constraints that they need to incorporate into their production
pipeline?

40

So with all these expectations for video games we have to remember that video
games ship to run in real-time (game real-time, 30 or 60 fps on constrained
platforms). When people hear the word ‘constraint’, a typical response is a slight
desire to run. “Why, darn it, why?” But what about the beauty that constraints bring?
Self-imposed constraints, when you have none, can only improve your work.
After all, setting the right set of constraints is how you deliver products…

41

We know that having concrete obstacles may prompt you to step back and start
looking at the big picture. SPU was a very good such obstacle, prompting game
developers to completely reformulate their solutions to generate data- or task-
parallel designs. What doesn’t kill you, after all, well, makes you curse stronger... But
it also makes you come up with really interesting solutions.
We can use constraints to guide us to new, utterly unexpected solutions. And of
course, never take constraints for granted. After all, sometimes we get so focused at a
wall in front of us, we may not realize that the solution takes us into an entirely
different land. And in the research field, you can smartly use known constraints to
look at the big picture to look further into the future, changing hardware pipelines,
changing rendering paradigms.

42

In order to solve any problems, we have to correctly identify the problem statement.
And because problem statements consist not only of the end goal, but the constraints
that define the possible space,
We must correctly identify both the goals AND constraints before we set out to solve
problems.

43

So naturally while developing video games we encounter a few real-world
constraints.. Where ‘real-world’ in this case is defined by ‘AAA blockbuster game
production needs’ since that is the world that I’m deeply ingrained in.

44

But many of these constraints apply, in a scaled down fashion – and perhaps even
more extreme – to the world of indie games as well

45

There are a number of real constraints that video games creation has to be aware of
(and we already touched on some of these). I won’t cover all of these in depth but it’s
enough to give you a taste.
On the high level we can list them as these buckets:
- <Artistic> vision / game play design constraints
- <Production> constraints: resources (man power, farm generation, timeline)
- <Platforms> - Hardware and System Constraints (Performance, Memory)
- <Risk> Management
- <Content> Production
- <Scalability>: Cross-Platform and Cross-Generation
- <Legal/Intellectual> Property

46

In video games, as in many other creative pursuits, everything begins with an idea. It
all begins with the design and artistic vision, the creative concept. After all, the
technology must first and foremost serve the aesthetic purpose of gameplay, the
experience we want the player to have
Here, for example, we have a concept image from the early days of Destiny, for one of
our destinations, Mars.

47

And here is an image from the resulting in-game rendering of that level.

48

All of the technology implemented for video games must take the artist and
gameplay vision and communicate it to the player. This means that the graphics
algorithms and features we implement must make sense within the aesthetic that the
video game wants to achieve.

49

Enabling palette and mood also means having high quality lighting – after all,
achieving artistic vision means giving the artists tools to express it.

50

But to communicate the artistic vision may mean completely impractical requests.
Blinn’s law which essentially states that the time to render a frame remains constant,
stays relevant for all media. While a game development frame does not take 10 hours
to render, this law is still accurate for both time it takes to preprocess a level and for
the time it takes to render a game frame. We got our 33 or 16 ms to fill – and must
communicate design or artistic vision in a practical way.

51

Here are the platform specific constraints that we have to mind while trying to bring
the artistic vision to life:
- CPU and GPU performance
- Memory footprint
- Loading times

52

Here are the CPU workload budgets that we used to ship Destiny (which ran at 30 fps)
for rendering workloads. I excluded gameplay affecting budgets though they
obviously are also very important. Note that these budgets held for all of our shipping
platforms – they didn’t magically increase on more capable PS4 or Xbox One. But at
the same time we were trying to render far more on those platforms. You will also
notice that these did not add up to 33 ms – that is because we overlapped some of
the computations (for example, submit to the GPU for previous frames overlaps with
simulation for current frame).

53

And at the same time while the CPU budgets did not increase, the number of
elements we were drawing increased. Here is the example of drawcalls that we were
pushing through a single frame of Destiny across two generations of consoles. You
notice that we increased nearly an order of magnitude in one generation – without
increasing our CPU budgets for submit. However, the CPU power has not increased in
the same proportion– so we had to learn to become more efficient on those
platforms.

54

Here are the GPU budgets for roughly-broken down features across different
platforms. We see a similar trend.

55

Note that although some of our budgets decreased with the higher power platforms
that can do more in less time

56

Many stayed <the same>. While the GPU throughput is higher on the latest
generation consoles – we are rendering more elements in a given frame (higher
quality shadows, more elements in Gbuffer, more FX, etc.). And we also <added>
graphics features on new consoles as well as <accounted> for increased resolution
costs (for example, running at 1080p on the latest generations).

57

With respect to memory, although the latest generation of consoles is far less
memory constrained than previous, there is an axis that has in fact not improved with
more memory thrown at the problem. Here is an example of how the loading times
changed across the two console generation. Although we have access to far more
memory on the current generation on consoles, the loading times increased as the
I/O bandwidth simply did not grow in the same order as the demands on memory.

58

So to put it simply, we continue to have to do more in the same time. As Blinn’s law
states, we have to
do more in the same time. And yet, we have to consider the impact of all the features
across several generations – with the same budgets. And of course, having
predictable budgets is what’s required for creating a robust and reliable game
experience.

59

So with all these constraints in mind, let’s take a look at a couple of R&D integration
examples from Destiny to explore what lessons we gleamed for R&D process.

60

The first case study is our work on developing a technique for low resolution
transparency.

61

Effects are a key component of Destiny’s visuals and the sandbox gameplay. We have
loads of them. And they all use alpha blending. Because of that, transparents
rendering are excessively dominated by the fill cost, thus reducing resolution was
crucial.

62

The key idea we started exploring is to render transparents FX to a low resolution
buffer. <Then> use down-sampled depth to Z-cull and <upsample> the low resolution
buffer to blend with the high res frame. <The key> challenge is to reduce edge
artifacts during this blend operation.

63

Here is an example of the artifacts with straightforward upsample blend: in this case,
we rendered particles into a ¼ res target (¼ w x ¼ h) and used regular bilinear
upsample to composite. <In this case>we notice the artifacts across depth
discontinuities which <when> you look closer are very apparent

64

We introduced a new technique inspired by <variance> shadow mapping in the
Destiny talk in the Advances course at SIGGRAPH 2013. In this technique, we
<model> per-particle transmittance as a CDF (Cumulative distribution function) of a
Gaussian. We <composite> using alpha-blending mean and variance for multiple
particles per pixel. Thus we <approximate> the CDF using a clamped Gaussian.

65

Here are the technical details (but you can find them in the slides later or in the 2013
talk’s slides).

66

We used the same ¼ res rendering but this time using our new VDM technique for
compositing.. <Notice> that we’re able to maintain natural transitions along depth
discontinuities while still keeping uber-fast rendering cost. The <artifacts> were
reduced and we were excited about this technique. <Looks> great, ship it, right?

67

However, when we integrated this into the shipping game and started looking at the
results on our real destinations, the picture changed. Notice the <artifacts> in the
zoomed picture. That was not acceptable as these artifacts were very noticeable
when moving and were quite distracting.

68

We then analyzed our technique to understand the reason behind these artifacts.
What didn’t work?
<First>, Single blended Gaussian does not approximate well when particles are far

apart
<Artifacts> are very noticeable in temporal domain
<For> performance reasons, we render particles in Z buckets, and we only have a

small number of buckets (to keep performance cost down). This exacerbated
the artifacts when particles were spread apart.

We had to go back to the drawing board.

69

The improved method we shipped in Destiny does the following:
- Output both min and max Z @ down-sample
- Accumulate particle color and alpha for both min and max down-sampled Z
- During upsample, pick min color/alpha, or max color/alpha, or blend, based on

high res Z

70

Now we an look in the same scene and the artifacts were <not> present. Ready to
ship!.

71

What Did We Learn?
• <An initial> – even successful - tech prototype can be misleading. Even when

early results are promising, it is important to explore variety of content to
understand the edge cases for the algorithm

• <It> takes about 20% of the total time to get the idea to work, but the
remaining 80% will be needed to handle the edge cases

• <Worse-case> artifacts can be prohibitive and cause you to need to significantly
reformulate the entire technique

• <In the end>, we found that we prefer a slightly lower quality approach that has
fewer egregious artifacts

72

Another case study from Destiny is our work on atmosphere rendering

73

We started from implementing a technique from BrunetonNeyret 2008 in real-time.
We covered the details of our implementation in the 2009 talk in Advances at
SIGGRAPH 2009.

74

This included single- and multiple scattering effects. In our implementation, pre-
computation could happen on the GPU for dynamic time of day support. This method
was attractive to us as it included support for atmosphere viewable from space and
for light shafts. At the time both were highly desired features for our game design and
visuals.

75

Here is the math for the computation of the atmosphere scattering that we used.

76

Our implementation allowed us to create realistic atmospheric effects with dynamic
time of day, and both sun and moonlight conditions. We were excited. <Ship it?>

77

However, once we integrated this method into the shipping game we encountered
several key challenges.
<First>, the technique was too expensive to compute for last-generation consoles.
It had <problems> with the shadow volume scalability and alpha-tested geometry.
But <far more> importantly, it did not offer intuitive artist-friendly controls – and
Bungie has amazing skybox artists. We could not limit their creativity. And we also
<learned> that space transition was no longer required for game play.
This shifted our perspective.

78

Our improved method accomplished similar goals to our original implementation in
the following manner:
<Model> two layers of (flat) medium
<Compute> analytical optical depth (OD)
<Artists> “modify the optical depth” by a texture
<Artists> control spectral attenuation
<Artists> paint sky color at time of day (TOD)
<Estimate> in-scattering from sky color
<Add> screen-space light shafts

79

This of course necessitated that we blend between physically based approximation
and a bit of magic. Here are the equations we used (will be distributed in the slides)
and the textures painted by the artists.

80

This method was able to achieve great performance on lower end consoles and
allowed us to achieve great visuals we were striving for.

81

The key lessons we extracted from this foray were that:
<Physically-based> controls alone are not enough
<Artists> need intuitive control – must match their workflows
<We> must combine physically-based computations with art-intuitive techniques for

a great overall result
<Having> methods that scale in performance and quality across hardware

generations is crucial for a shipping engine. We’re willing to give up some
quality for faster performance on lower-end platforms.

<When> design goals change, it’s a time to re-evaluate your goals

82

As you can see from the vast list of features, growing production costs and shortening
timelines, game developers can use your help with research!

83

We need to collaborate more effectively with research. We’re excited to share our
pipelines, our methods and problems to educate the research community about the
needs of the game developers.
Pooling resources together only helps moving the industry forward.
Two-way conversation is crucial – by having real problems to solve, research can stay
relevant and game technology will move forward by leaps.

84

Aside from direct collaboration, what are the properties that make a research
technique well-positioned for successful technology transfer to video games?
<Having> predictable average and worse-case performance is very important. As you
saw, we have explicit budgets for rendering, and knowing the cost of a particular
feature can help the decision of whether it makes sense to integrate or not.

85

Having bound memory footprint is another key component.

<Game developers> are also always looking for plug-n-play stand-alone examples and
systems. Great examples include demos with shader or mesh techniques (for
example, the recent HDAO, FXAA examples) as these are easy to consume quickly and
validate in the shipping game content. Having a working source code with example
assets is a key component for practical research and adoption.

86

Distributing your demos with MIT license, having well-explained source code and
sharing the assets you used would also aid game developers being able to explore
your techniques. While I was working in applied R&D world, it was not unreasonable
for me to spend 3-6 months or even a year on a single technique. In my game
developer days, I usually have anywhere from 2 days to 2 weeks to integrate a
feature. And this includes doing that for all of our shipping platforms.

87

And lastly, though this may be obvious, but it’s fantastic when magic numbers used
for a particular technique are explained well. This is what’s usually covered by the ‘is
this paper reproducible’ on the reviews, but often is ignored for demos.
- An in-depth blog post explaining the intuition behind the technique is fantastic to

include
- We often want to understand the cost of iteration on a particular technique

88

In order to know how well a particular technique fits into games pipelines, it’s always
helpful to understand how it needs to be integrated. <What> artistic controllability
does an algorithm offer? How do existing assets need to change in order to support
this method? Do new assets need to be created?

89

Understanding other constraints and limitations is helpful. <How> does the technique
work with animated meshes? <Are> there artifacts? Even if there are, it’s perfectly
fine to distribute the technique – some of the artifacts are easily worked around in
practice, whereas others are more difficult to avoid.

90

In conclusion, the game industry is not slowing down – players expect more
immersion and fidelity in the coming years!
Games algorithms increase in complexity and feature richness require more
collaboration with research
Two-way conversation benefits both tremendously. Talk to game developers and let’s
engage more closely to benefit both industry and research!

91

92

93

94

