Physics in Games

Matthias Muller

www.MatthiasMueller.info

NVIDIA.

Outline

* Comparison
— Physical simulations in engineering
— Offline physics in graphics (mostly movies)
— Interactive physics
— Real time physics in games
* Position Based Dynamics
— Algorithm

— Examples: cloth, rigid bodies, fluids, unified solver

c Q&A

NVIDIA.

Simulations in Engineering

e Complement real experiments

* Extreme conditions, spatial scale, time scale
* Accuracy most important factor

* Low accuracy: Useless result!

* One central gigantic computer &
NVIDIA.

Evolution of Compute Power

Zuse’s 71 (1938) Titan (currently number 2)
0.2 ops using 18,000 nvidia GPUs
~27,000,000,000,000,000 flops!
S

NVIDIA.

Simulation of Hurricane Sandy

* National Center for Supercomputing Applications
* 9120x9216 x 48 cells (500 m)
e 13,680 nodes and 437,760 cores on Titan

e Sustained rate of 285 teraflops @2
NVIDIA.

Physics in Graphics

NVIDIA.

Re-inventing the Wheel?

e Since late 80’s [Terzopoulos et al. 87, 88]

 Rediscoveries

— Semi-Lagrangian advection, co-rotational FEM,
X introduced Y to graphics (SPH, MPM, FLIP, ...)
e Goals of physics in graphics
— Imitation of physical phenomena / effects
— Plausible behavior (cheating possible)
— Trade accuracy for speed, stability, simplicity
— Control (by director / game developer)

* New goals require new methods!

<3

NVIDIA.

Offline Methods

[Emmerich, Movie 2012]

* Main application: Movies

 >>1 sec of computation for 1 sec of simulation allows:
— High resolution (fluid grid, FEM mesh, time steps)
— Re-runs and adaptive time steps

— Time consuming shading rSTZmA

Interactive Physics

 Between offline and game physics
* Virtual surgery, virtual reality, demos

e >151ps
* No adaptive time steps
* Robust
* No re-runs
* Unforeseeable situations

NVIDIA.

Water Demo (Grc2012)

* First time real-time Eulerian water sim + ray tracing

2 x GTX 680
Multi-grid

[Chentanez et al., 2011]
OptiX

x <X

NVIDIA.

Dragon

* Eulerian fluid simulation + combustion model + volumetric rendering

Physics in Games

NVIDIA.

Game Requirements

to compute
— 30-60 fps of which physics only gets a small fraction
* Low consumption
— Consoles, fit into graphics (local) memory
in extreme settings
— 180 degree turns in one time step

* High level of

e Meet all these constraints

* Get to offline results as close as possible
NVIDIA.

Speedup Tricks

Reduce simulation resolution
— Simple: Use same algorithms
— Interesting details disappear

Reduce dimension (e.g. 3d = 2d)
for physics and appearance
Simulate only in (sleeping)
Camera dependent level of detail
Invent

Use GPUs and CUDA! ©

NVIDIA.

Game Physics Methods

NVIDIA.

Animation

* Pros:

— Can be and used
(3d movie playback)

— What artists are used to do

* Cons
— Time consuming manual work
— Hard to handle complex phenomena
— Repeating behavior

NVIDIA.

Particle Physics

and form of physics effect
— droplets, smoke, fire, debris [Reeves, 1983]

vs. game play physics
— does no path blocking

* Most expensive part:
with large environments
— particle-particle (often not needed)
— Advection by incompressible velocity field ()

NVIDIA.

Rigid Bodies

 Game physics engines
= rigid body engines
* Challenges

» Stability (stacking)

* Speed (solver and
collision detection)

inthevif with blender & bullet

e Continuous collision detection
(fast moving objects)

* Rarely in-house
* Middleware popular (PhysX, havok, bullet) <X

NVIDIA.

Destruction

 Traditional: static fracture
e Artists models

* Models are replaced by parts
when collision forces exceed a threshold

* Pro:

* High level of control

* Cons:

* Tedious manual work

NVIDIA.

B Mew Destructible*

Flo Edt Tooks

Fracture

Map Seloctod. (G:\Usor

PhysX Lab
Hap

PhysX Destruction Tool

\bgaldrikian\Deskiop\GRC\SampheContentGDO\APEX_Samphesiwall_fm.bmp)

Control Panel

m

|

Tools | Materials A-.-.nls
Rand
Generate
Seed
Core Mesh
BSP

Calculate Mash BSP

Mash Processing / Cleanup
Island Generation

Fracture tap

wall_fm

View * ®» 0O & »

Fit To Object
Map Size (1-9999.99)

Width & 1.00

Canimbe

X +X -Y +Y -Z. ¥2

Enable L I DN I |

Pattern Based Fracture (Miiller et al., 2013]

NG
S IR

lllﬂ\"

* Pre-designed fracture pattern

S

NVIDIA.

Pattern Based Fracture (Miller et al., 2013]
N A S o
RN)

/

P N -
/[/1 TN\

* Pre-designed fracture pattern

e Align pattern with impact location at runtime

* Use pattern as stencil @2
NVIDIA.

Arena Destruction (SG 2013 real time live)

500k faces at start
 GPU1: rigid body simulation

* GPU2: smoke, rendering
e CPU: dynamic fracturing

R ofr < i ' ‘ & - -
o] | .;Jl | =
a |(BRIERE . y 3 - R

B og) I8 BET r 1A

Deformable Objects

* 1d: Ropes, hair

e 2d: Cloth, clothing

e 3d: Fat guys, tires

NVIDIA.

Existing Methods

* Mass-Spring Systems / FEM
* Explicit integration
* Implicit integration

— Expensive
— Large time steps for real time simulation needed

NVIDIA.

Position Based Dynamics

[Mdller et al., 2006]

NVIDIA.

Position Based Dynamics

[Muller et al., 2006]

e TR R
U W O]
L . LT e e

J'\.J'l1d'l J-\.n.l.l J'\.J'l1d'\. J'\.J'l1d:. Aﬂ14
i i i i i i
LU L ¥ L L Fak B IR T

[google scholar]

<3

NVIDIA.

Force Based Update

% £ 00

penetration forces velocities
causes forces change velocities change positions

* Reaction lag
* Small spring stiffness - system
* Large spring stiffness = stiff system,

NVIDIA.

Position Based Update

penetration move objects so that

) update velocities!
detection only they do not penetrate

e Controlled position change
* Only as much as needed - no overshooting
* Velocity update needed to get 2"9 order system!

NVIDIA.

Position Based Integration

init X0, Vo
loop
p

Xn+1
u

Vi+1
end loop

X, Vo, Pyu € R3Y

— X, +At-v, prediction

«— modify p

— (X1 — X)) /At velocity update
«— modify u

NVIDIA.

Position Correction

 Example: Particle on circle

prediction

new velocity
correction

NVIDIA.

Velocity Correction

* External forces: v, =u+ At g

m
* Internal damping

e Friction corrected

velocit
e Restitution prediction '
g/ friction

..) restitution
collision correction

A

NVIDIA.

Distance Constraint

AXZ AX, = — W1 . iy X1 —Xp
-2 X1 Wy + w, (1% — x| — lp) X, — X,
Ax4 Lo
/ mz A + > (l | l) X1 _XZ
X, = X1 —Xo| —
2 w1 + W ! 2 0 X1 — X5
mq

1
. wW; = —
* Conservation of momentum Lomy

* Stiffness: scale corrections by k € [0,1]
— Easy to tune
— Effect dependent on and

— Often constant in games
NVIDIA.

General Internal Constraint

* Define constraint via scalar function:

Caist(X1,X2) = X1 — %] — [

Cootume (X1,X2,X3,X4) = [(Xz — X1) X (X3 —X9)] - (X4 —X1) — 6V
* Find configuration for which C =0

e Searchalong VC

rigid body modes %
NVIDIA.

Constraint Projection

Cx+Ax) =0

* Linearization (equal for distance constraint)
Cx+Ax) ~CX)+VCx)TAx=0

* Correction vectors

Ax = AVC(x)
}_ C(x)
T 7C®TVC(X)

Ax =AM~V C(x)

C(x)

A= e TM Ve

M = diag(m,,m,,..,my)
NVIDIA.

Constraint Solver

* Gauss-Seidel
through all constraints and apply projection
— Perform
— Simple to implement
— Atomic operations required for parallelization

e Modified Jacobi

— Process all constraints in parallel
— Accumulate corrections
— After each iteration, [Bridson et al., 2002]

* Both known for slow convergence
NVIDIA.

G IObaI SOI\Ie r [Goldenthal et al., 2007]

* (Constraint vector

C,(%)] e, (x)T M
Cx)=| - rcx) =| - A= []
[471¢9) VCy(x)T Am
_ M1 _ C®
Ax=MTTCRX) A A e TML Ve
Vs
Ax = M~7Cx)TA [VCM™IVC(x)T] A= —C(x)

NVIDIA.

Global vs. Gauss-Seidel

e Gradients fixed

 Linear solution # true
solution

 Multiple Newton
steps necessary

* Current gradients at each
constraint projection I L,
* Solver converges

to the true solution A,
NVIDIA.

Other Speedup Tricks

e Use as smoother in a multi-grid method
* Long range distance constraints (LRA)

* Shape matching

e Hierarchy of meshes

NVIDIA.

Amazing Gauss-Seidel!

e Can handle unilateral (inequality) constraints (LCPs, QPs)!

— Fluids: [Chentanez at al., 2012]
— Rigid bodies: LCP solver [Tonge et al., 2012]
— Deformable objects: Long range attachments [Kim et al., 2012]

 Works on directly

* Handles under and over-constrained problems

* GS+ PBD: garbage in, simulation out (almost ©)
trivial

* Easy to implement and parallelize
NVIDIA.

Analysis of PBD

NVIDIA.

Correction = Acceleration

* Predicted position

(Xn — Xp-1)
p =X, + Atv, =X, + At nTnol

* Projection

Xp+1 = P+ AX

AX = X411 — 2X, + X1

NVIDIA.

Implicit Euler

Xn41 — 2Xp + X1
M= = ()

MAX — Atz f(Xn+1)

Formulation as an optimization problem for Ax:

min (+ AtZE(xn+1)>

) \

Y

inertia term energy term

NVIDIA.

Stiffness — Infinity

min(+ AtZ%kCZ(Xn_H)) /[l EX) = %kcz(x)

Now let k — o
. (1 T . .
min (- Ax MAX) subject to C(x;,41) = 0

* C(Xp+1) =0
e MAXx = AVC(Xn+1)

—> Ax=AM'VC(x,4;) PBD
NVIDIA.

Two Interpretations

rigid body modes

<3

NVIDIA.

Constraint Solver

* PBD solves a non-linear optimization problem

min GAXTMAX) subject to C;(x,41) =0, i €[1,..,m]

by solving a

min G AxTMAx) subject to C;(X,4+1) = 0

NVIDIA.

Clothing Demo

Nurien

“LRam

e
smusw

|
| I!
“

P~ |
\\L_ "o

N

NVIDIA.

Cloth

* Slow error propagation —> stretchy cloth

 Low resolution: no detailed wrinkles

e Solutions
— Use hierarchy of meshes (complicated)
— Has been an open problem for us

— Found an embarrassingly simple solution

<3

NVIDIA.

Long Range Attachments (LRA)

* Upper distance constraint to closest attachment point
* Unilateral: project only if distance too big

[Kim et al., 2012], 90k particles @Z
NVIDIA.

B30 porticles, 100K hars, 2723 (ps
Lot Mouse - Sow

Rigid Mousa - Retate Canara

@ Supsrsanping

Shatew Cpazn: e——

SRR ATDIET e —

Par Half Shatcw Varilion es@m—
Har Opecly e

Har Base Thicire:s e

R TIp Thicknns: e——

Hail DiMiza COIor 55317 emm—o—
Vet Specusr Color Soale em—i—
T —
Frafiness _‘

Wird X e — Wi Y ei— W1 7 ei—
BRI 5)6e e m— 0 R0 e—p—

O Aniate (#)
W SinvEs ()

Challenge

* Similar idea for compression?
* Long range distance constraint to the ground?

T

JI 0‘

A A

<3

NVIDIA.

Rigid Objects

* Optimally match un-deformed with deformed shape
* Only allow translation and rotation

* Global correction, no propagation needed
| propag @2
* No mesh needed! NVIDIA.

Position Based Fluids [Macklin et al. 2013]

 Particle based

 Pair-wise lower distance constraints
— granular behavior

* Move particles in local neighborhood
such that density = rest density

* Density constraint
C(Xl) =) Xn) — pSPH(XlJ = Xn) — Po

NVIDIA.

Mesh Independent Deformations

L

[Mdller et al, 2014]

* For each triangle:

C(Xl,..,X3)=Gij(X1,..,X3) G:FTF_I

S

NVIDIA.

[Bender et al, 2014]

 For each tetrahedron:

C(Xy,..,X4) = Eppp(Xq,..,X4)

<3

NVIDIA.

U nified SOIVer [Macklin et al., 2014]

e Putting it all together

e Plus
— Static friction

— Stiff stacks via mass modifications

— Two-way fluid — solid coupling @2
NVIDIA.

Acknowledgements

* PhysX Research Group

Nuttapong Tae -Yong Miles

* PhysX Group Chentanez Kim Macklin
NVIDIA.

<3

NVIDIA.

Thanks!

Questions?

