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Simulations in Engineering 

• Extreme conditions, spatial scale, time scale 

• Accuracy most important factor 

• Low accuracy: Useless result! 

• One central gigantic computer 

• Complement real experiments 



Evolution of Compute Power 

Zuse’s Z1 (1938) 
0.2 ops 

Titan (currently number 2) 
using 18,000 nvidia GPUs 

27,000,000,000,000,000 flops! 



Simulation of Hurricane Sandy 

• National Center for Supercomputing Applications 
• 9120 x 9216 x 48 cells (500 m) 
• 13,680 nodes and 437,760 cores on Titan 
• Sustained rate of 285 teraflops 



Physics in Graphics 



Re-inventing the Wheel? 

• New goals require new methods! 

• Goals of physics in graphics 
– Imitation of physical phenomena / effects 

– Plausible behavior (cheating possible) 

– Trade accuracy for speed, stability, simplicity 

– Control (by director / game developer) 

• Since late 80’s [Terzopoulos et al. 87, 88] 

• Rediscoveries  
– Semi-Lagrangian advection, co-rotational FEM,  

X introduced Y to graphics (SPH, MPM, FLIP, …) 



Offline Methods 

• >> 1 sec of computation for 1 sec of simulation allows: 
– High resolution (fluid grid, FEM mesh, time steps) 

– Re-runs and adaptive time steps 

– Time consuming shading 

[Emmerich, Movie 2012] 

• Main application: Movies 



Interactive Physics 

• Between offline and game physics 

• Virtual surgery, virtual reality, demos 

• All available compute power 

• > 15 fps 

• No adaptive time steps 

• Robust 

• No re-runs 

• Unforeseeable situations 



Water Demo (GTC 2012) 

• First time real-time Eulerian water sim + ray tracing 

2 x GTX 680  

Multi-grid  
[Chentanez et al., 2011] 

OptiX 



Dragon 
• Eulerian fluid simulation + combustion model + volumetric rendering  



Physics in Games 



Game Requirements 
• Cheap to compute 

– 30-60 fps of which physics only gets a small fraction 

• Low memory consumption 

– Consoles, fit into graphics (local) memory 

• Stable in extreme settings 

– 180 degree turns in one time step 

• High level of control 

 
• Challenge 

• Meet all these constraints 

• Get to offline results as close as possible 



Speedup Tricks 
• Reduce simulation resolution 

– Simple: Use same algorithms 

– Interesting details disappear 

• Reduce dimension (e.g. 3d → 2d) 

• Use different resolution for physics and appearance 

• Simulate only in active regions (sleeping) 

• Camera dependent level of detail (LOD) 

• Invent new simulation methods! 

 
• Use nvidia GPUs and CUDA!  

 



Game Physics Methods 



Animation 

• Pros:  
– Can be and still is used for almost everything  

(3d movie playback) 

• Cons 
– Time consuming manual work 

– Hard to handle complex phenomena 

– Repeating behavior 

– Full control 

– What artists are used to do 



Particle Physics 

• Simplest and very popular form of physics effect 
– droplets, smoke, fire, debris  [Reeves, 1983] 

• Effects physics vs. game play physics 
– does not influence game play, no path blocking 

• Most expensive part: 
– collision detection with large environments 

– particle-particle interaction (often not needed) 

– Advection by incompressible velocity field (fluid solver) 





Rigid Bodies 

• Rarely in-house 

• Middleware popular (PhysX, havok, bullet) 

• Game physics engines  
= rigid body engines 

• Challenges 
• Stability (stacking) 

• Speed (solver and  
collision detection) 

• Continuous collision detection  
(fast moving objects) 

inthevif with blender & bullet 



Destruction 
• Traditional: static fracture 

• Artists pre-fracture models 

• Models are replaced by parts 
when collision forces exceed a threshold  

• Pro: 
• High level of control 

• Cons: 
• Tedious manual work 

• Independent of impact location 



PhysX Destruction Tool 



Pattern Based Fracture [Müller et al., 2013] 

• Pre-designed fracture pattern 



Pattern Based Fracture 

• Pre-designed fracture pattern 

[Müller et al., 2013] 

• Align pattern with impact location at runtime 

• Use pattern as stencil 





Arena Destruction  (SG 2013 real time live) 

• 500k faces at start 

• GPU1: rigid body simulation 

• GPU2: smoke, rendering 

• CPU: dynamic fracturing 





Deformable Objects 

• 1d: Ropes, hair 

• 2d: Cloth, clothing 

• 3d: Fat guys, tires 



Existing Methods 

• Force based 

• Mass-Spring Systems / FEM 

• Explicit integration unstable 
• Implicit integration  

– Expensive 

– Large time steps for real time simulation needed 

– Numerical damping 



Position Based Dynamics 
[Müller et al., 2006] 



Position Based Dynamics 
[Müller et al., 2006] 

[google scholar] 



Force Based Update 

• Reaction lag 

• Small spring stiffness → squashy system 

• Large spring stiffness → stiff system, overshooting 

penetration  
causes forces 

velocities  
change positions 

forces  
change velocities 



Position Based Update 

• Controlled position change 

• Only as much as needed → no overshooting 

• Velocity update needed to get 2nd order system! 

penetration 
detection only 

move objects so that 
they do not penetrate 

update velocities! 



Position Based Integration 

init x0, v0  x𝑛, v𝑛, p, u ∈ ℝ3𝑁 

loop 

 p  ← x𝑛 + ∆𝑡 ∙ v𝑛  prediction 

 x𝑛+1
  ← modify p  position correction 

 u  ← (x𝑛+1 − x𝑛)/∆𝑡 velocity update 

 v𝑛+1  ← modify u velocity correction 

end loop 



Position Correction 

• Example: Particle on circle 

prediction 

correction 
new velocity 



Velocity Correction 

• External forces: v𝑛+1 = u + ∆𝑡 
g
𝑚

 

• Internal damping 

• Friction 

• Restitution 

collision correction 

prediction 

restitution 

friction 

corrected  
velocity 



∆x1 = −
𝑤1

𝑤1 + 𝑤2
x1 − x2 − 𝑙0

x1 − x2

x1 − x2
 

Distance Constraint 

• Conservation of momentum 

• Stiffness: scale corrections by 𝑘 ∈ 0,1  
– Easy to tune  

– Effect dependent on time step size and iteration count 

– Often constant in games 

∆x2 = +
𝑤2

𝑤1 + 𝑤2
x1 − x2 − 𝑙0

x1 − x2

x1 − x2
 

𝑤𝑖 =
1

𝑚𝑖
 

𝑚1 

𝑚2 
∆x1 

∆x2 

𝑙0 



General Internal Constraint 
• Define constraint via scalar function: 

𝐶𝑑𝑖𝑠𝑡 x1, x2 = x1 − x2 − 𝑙0 

𝐶𝑣𝑜𝑙𝑢𝑚𝑒 x1, x2, x3, x4 = x2 − x1 × x3 − x1 ∙ x4 − x1 − 6𝑣0 

• Find configuration for which 𝐶 = 0 

• Search along 𝛻𝐶 
𝐶 = 0 

rigid body modes 

𝛻𝐶 



Constraint Projection 

• Linearization (equal for distance constraint) 

𝐶 x + ∆x ≈ 𝐶 x + 𝛻𝐶 x 𝑇∆x = 0 

∆x = 𝜆 𝛻𝐶 x  

λ = −
𝐶 x

𝛻𝐶 x 𝑇𝛻𝐶 x
 λ = −

𝐶 x

𝛻𝐶 x 𝑇M−1 𝛻𝐶 x
 

∆x = 𝜆 M−1𝛻𝐶 x  

M = 𝑑𝑖𝑎𝑔 𝑚1, 𝑚2, . . , 𝑚𝑛  

• Correction vectors 

𝐶 x + ∆x = 0 



Constraint Solver 
• Gauss-Seidel 

– Iterate through all constraints and apply projection 
– Perform multiple iterations 
– Simple to implement 
– Atomic operations required for parallelization 

 • Modified Jacobi 
– Process all constraints in parallel 
– Accumulate corrections 
– After each iteration, average corrections   [Bridson et al., 2002] 

• Both known for slow convergence 



Global Solver 

• Constraint vector 

λ = −
𝐶 x

𝛻𝐶 x 𝑇M−1 𝛻𝐶 x
 ∆x = M−1𝛻𝐶 x  𝜆 

C x =
𝐶1 x

⋯
𝐶𝑀 x

 𝛻C x =
𝛻𝐶1 x 𝑇

⋯
𝛻𝐶𝑀 x 𝑇

 

𝛻𝐶 x M−1𝛻C x 𝑇  λ = −C x  ∆x = M−1𝛻C x 𝑇λ 

λ =
𝜆1

⋯
𝜆𝑀

 

[Goldenthal et al., 2007] 



Global vs. Gauss-Seidel 
• Gradients fixed 

• Linear solution ≠ true 
solution 

• Multiple Newton  
steps necessary 

• Current gradients at each 
constraint projection 

• Solver converges  
to the true solution 

𝛻𝐶2 
𝛻𝐶1 

𝑙2 𝑙1 

𝑙2 𝑙1 



Other Speedup Tricks 

 

• Use as smoother in a multi-grid method 

• Long range distance constraints (LRA) 

• Shape matching 

• Hierarchy of meshes 

 



Amazing Gauss-Seidel! 

• Can handle unilateral (inequality) constraints (LCPs, QPs)! 
– Fluids: separating boundary conditions [Chentanez at al., 2012] 

– Rigid bodies: LCP solver [Tonge et al., 2012] 

– Deformable objects: Long range attachments [Kim et al., 2012] 

• Works on non-linear problem directly 

• Handles under and over-constrained problems 

• GS + PBD: garbage in, simulation out (almost ) 

• Fine grained interleaved solver trivial 

• Easy to implement and parallelize 

 



Analysis of PBD 



Correction = Acceleration 

• Predicted position 

p = x𝑛 + ∆𝑡v𝑛 = x𝑛 + ∆𝑡
x𝑛 − x𝑛−1

∆𝑡
= 2x𝑛 − x𝑛−1 

x𝑛+1 = p + ∆x 

• Projection 

∆x = x𝑛+1 − 2x𝑛 + x𝑛−1 



Implicit Euler 

min
1

2
∆x𝑇M∆x +  ∆𝑡2𝐸 x𝑛+1  

M∆x = ∆𝑡2 f x𝑛+1  

M
𝐱𝑛+1 − 2𝐱𝑛 + 𝐱𝑛−1

∆𝑡2
 =  f x𝑛+1  

Formulation as an optimization problem for ∆x: 

inertia term energy term 



Stiffness  Infinity 

min
1

2
∆x𝑇M∆x  +  ∆𝑡2

1

2
𝑘𝐶2 x𝑛+1  

min
1

2
∆x𝑇M∆x  subject to 𝐶 x𝑛+1 = 0 

∆x = 𝜆 M−1𝛻𝐶 x𝑛+1  

• 𝐶 x𝑛+1 = 0 

• M∆x = 𝜆𝛻𝐶 x𝑛+1   

PBD 

Now let 𝑘 → ∞ 

 // 𝐸 x =
1

2
𝑘𝐶2 x  



Two Interpretations 

𝐶 = 0 

rigid body modes 

𝛻𝐶 = 𝜆𝛻 ∆x2  



Constraint Solver 

min
1

2
∆x𝑇M∆x  subject to 𝐶𝑖 x𝑛+1 = 0,  𝑖 ∈ 1, . . , 𝑚  

• PBD solves a non-linear optimization problem 

by solving a sequence of QPs: 

min
1

2
∆x𝑇M∆x  subject to 𝐶𝑖 x𝑛+1 = 0 



Clothing Demo 
Nurien 



Cloth 

• Slow error propagation  stretchy cloth 

• Low resolution: no detailed wrinkles 
 

• Solutions 

– Use hierarchy of meshes (complicated) 

– Has been an open problem for us 

– Found an embarrassingly simple solution 



Long Range Attachments (LRA) 
• Upper distance constraint to closest attachment point 

• Unilateral: project only if distance too big 

[Kim et al., 2012], 90k particles 





Challenge 

• Similar idea for compression? 

• Long range distance constraint to the ground? 

 



Rigid Objects 

• Global correction, no propagation needed 

• No mesh needed! 

• Optimally match un-deformed with deformed shape 

• Only allow translation and rotation 

p𝑖 

∆x𝑖 



Position Based Fluids 

• Move particles in local neighborhood 
such that density = rest density 

𝐶 x1, . . , x𝑛 = 𝜌𝑆𝑃𝐻 x1, . . , x𝑛 − 𝜌0 

• Density constraint 

• Particle based 

• Pair-wise lower distance constraints 
 granular behavior 

[Macklin et al. 2013] 





Mesh Independent Deformations 

𝐶 x1, . . , x3 = 𝐆𝑖𝑗 x1, . . , x3  

• For each triangle: 

[Müller et al, 2014] 

𝐆 = 𝐅T𝐅 − 𝐈 



FEM 

𝐶 x1, . . , x4 = 𝐸𝐹𝐸𝑀 x1, . . , x4  

[Bender et al, 2014] 

• For each tetrahedron: 



Unified Solver [Macklin et al., 2014] 

• Plus 
– Static friction 
– Stiff stacks via mass modifications 
– Two-way fluid – solid coupling 

• Putting it all together 
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Questions? 

Thanks! 


