
Physics in Games
Matthias Müller

www.MatthiasMueller.info

Outline
• Comparison

– Physical simulations in engineering

– Offline physics in graphics (mostly movies)

– Interactive physics

– Real time physics in games

• Position Based Dynamics
– Algorithm

– Examples: cloth, rigid bodies, fluids, unified solver

• Q & A

Simulations in Engineering

• Extreme conditions, spatial scale, time scale

• Accuracy most important factor

• Low accuracy: Useless result!

• One central gigantic computer

• Complement real experiments

Evolution of Compute Power

Zuse’s Z1 (1938)
0.2 ops

Titan (currently number 2)
using 18,000 nvidia GPUs

27,000,000,000,000,000 flops!

Simulation of Hurricane Sandy

• National Center for Supercomputing Applications
• 9120 x 9216 x 48 cells (500 m)
• 13,680 nodes and 437,760 cores on Titan
• Sustained rate of 285 teraflops

Physics in Graphics

Re-inventing the Wheel?

• New goals require new methods!

• Goals of physics in graphics
– Imitation of physical phenomena / effects

– Plausible behavior (cheating possible)

– Trade accuracy for speed, stability, simplicity

– Control (by director / game developer)

• Since late 80’s [Terzopoulos et al. 87, 88]

• Rediscoveries
– Semi-Lagrangian advection, co-rotational FEM,

X introduced Y to graphics (SPH, MPM, FLIP, …)

Offline Methods

• >> 1 sec of computation for 1 sec of simulation allows:
– High resolution (fluid grid, FEM mesh, time steps)

– Re-runs and adaptive time steps

– Time consuming shading

[Emmerich, Movie 2012]

• Main application: Movies

Interactive Physics

• Between offline and game physics

• Virtual surgery, virtual reality, demos

• All available compute power

• > 15 fps

• No adaptive time steps

• Robust

• No re-runs

• Unforeseeable situations

Water Demo (GTC 2012)

• First time real-time Eulerian water sim + ray tracing

2 x GTX 680

Multi-grid
[Chentanez et al., 2011]

OptiX

Dragon
• Eulerian fluid simulation + combustion model + volumetric rendering

Physics in Games

Game Requirements
• Cheap to compute

– 30-60 fps of which physics only gets a small fraction

• Low memory consumption

– Consoles, fit into graphics (local) memory

• Stable in extreme settings

– 180 degree turns in one time step

• High level of control

• Challenge

• Meet all these constraints

• Get to offline results as close as possible

Speedup Tricks
• Reduce simulation resolution

– Simple: Use same algorithms

– Interesting details disappear

• Reduce dimension (e.g. 3d → 2d)

• Use different resolution for physics and appearance

• Simulate only in active regions (sleeping)

• Camera dependent level of detail (LOD)

• Invent new simulation methods!

• Use nvidia GPUs and CUDA! 

Game Physics Methods

Animation

• Pros:
– Can be and still is used for almost everything

(3d movie playback)

• Cons
– Time consuming manual work

– Hard to handle complex phenomena

– Repeating behavior

– Full control

– What artists are used to do

Particle Physics

• Simplest and very popular form of physics effect
– droplets, smoke, fire, debris [Reeves, 1983]

• Effects physics vs. game play physics
– does not influence game play, no path blocking

• Most expensive part:
– collision detection with large environments

– particle-particle interaction (often not needed)

– Advection by incompressible velocity field (fluid solver)

Rigid Bodies

• Rarely in-house

• Middleware popular (PhysX, havok, bullet)

• Game physics engines
= rigid body engines

• Challenges
• Stability (stacking)

• Speed (solver and
collision detection)

• Continuous collision detection
(fast moving objects)

inthevif with blender & bullet

Destruction
• Traditional: static fracture

• Artists pre-fracture models

• Models are replaced by parts
when collision forces exceed a threshold

• Pro:
• High level of control

• Cons:
• Tedious manual work

• Independent of impact location

PhysX Destruction Tool

Pattern Based Fracture [Müller et al., 2013]

• Pre-designed fracture pattern

Pattern Based Fracture

• Pre-designed fracture pattern

[Müller et al., 2013]

• Align pattern with impact location at runtime

• Use pattern as stencil

Arena Destruction (SG 2013 real time live)

• 500k faces at start

• GPU1: rigid body simulation

• GPU2: smoke, rendering

• CPU: dynamic fracturing

Deformable Objects

• 1d: Ropes, hair

• 2d: Cloth, clothing

• 3d: Fat guys, tires

Existing Methods

• Force based

• Mass-Spring Systems / FEM

• Explicit integration unstable
• Implicit integration

– Expensive

– Large time steps for real time simulation needed

– Numerical damping

Position Based Dynamics
[Müller et al., 2006]

Position Based Dynamics
[Müller et al., 2006]

[google scholar]

Force Based Update

• Reaction lag

• Small spring stiffness → squashy system

• Large spring stiffness → stiff system, overshooting

penetration
causes forces

velocities
change positions

forces
change velocities

Position Based Update

• Controlled position change

• Only as much as needed → no overshooting

• Velocity update needed to get 2nd order system!

penetration
detection only

move objects so that
they do not penetrate

update velocities!

Position Based Integration

init x0, v0 x𝑛, v𝑛, p, u ∈ ℝ3𝑁

loop

 p ← x𝑛 + ∆𝑡 ∙ v𝑛 prediction

 x𝑛+1
 ← modify p position correction

 u ← (x𝑛+1 − x𝑛)/∆𝑡 velocity update

 v𝑛+1 ← modify u velocity correction

end loop

Position Correction

• Example: Particle on circle

prediction

correction
new velocity

Velocity Correction

• External forces: v𝑛+1 = u + ∆𝑡
g
𝑚

• Internal damping

• Friction

• Restitution

collision correction

prediction

restitution

friction

corrected
velocity

∆x1 = −
𝑤1

𝑤1 + 𝑤2
x1 − x2 − 𝑙0

x1 − x2

x1 − x2

Distance Constraint

• Conservation of momentum

• Stiffness: scale corrections by 𝑘 ∈ 0,1
– Easy to tune

– Effect dependent on time step size and iteration count

– Often constant in games

∆x2 = +
𝑤2

𝑤1 + 𝑤2
x1 − x2 − 𝑙0

x1 − x2

x1 − x2

𝑤𝑖 =
1

𝑚𝑖

𝑚1

𝑚2
∆x1

∆x2

𝑙0

General Internal Constraint
• Define constraint via scalar function:

𝐶𝑑𝑖𝑠𝑡 x1, x2 = x1 − x2 − 𝑙0

𝐶𝑣𝑜𝑙𝑢𝑚𝑒 x1, x2, x3, x4 = x2 − x1 × x3 − x1 ∙ x4 − x1 − 6𝑣0

• Find configuration for which 𝐶 = 0

• Search along 𝛻𝐶
𝐶 = 0

rigid body modes

𝛻𝐶

Constraint Projection

• Linearization (equal for distance constraint)

𝐶 x + ∆x ≈ 𝐶 x + 𝛻𝐶 x 𝑇∆x = 0

∆x = 𝜆 𝛻𝐶 x

λ = −
𝐶 x

𝛻𝐶 x 𝑇𝛻𝐶 x
 λ = −

𝐶 x

𝛻𝐶 x 𝑇M−1 𝛻𝐶 x

∆x = 𝜆 M−1𝛻𝐶 x

M = 𝑑𝑖𝑎𝑔 𝑚1, 𝑚2, . . , 𝑚𝑛

• Correction vectors

𝐶 x + ∆x = 0

Constraint Solver
• Gauss-Seidel

– Iterate through all constraints and apply projection
– Perform multiple iterations
– Simple to implement
– Atomic operations required for parallelization

 • Modified Jacobi
– Process all constraints in parallel
– Accumulate corrections
– After each iteration, average corrections [Bridson et al., 2002]

• Both known for slow convergence

Global Solver

• Constraint vector

λ = −
𝐶 x

𝛻𝐶 x 𝑇M−1 𝛻𝐶 x
 ∆x = M−1𝛻𝐶 x 𝜆

C x =
𝐶1 x

⋯
𝐶𝑀 x

 𝛻C x =
𝛻𝐶1 x 𝑇

⋯
𝛻𝐶𝑀 x 𝑇

𝛻𝐶 x M−1𝛻C x 𝑇 λ = −C x ∆x = M−1𝛻C x 𝑇λ

λ =
𝜆1

⋯
𝜆𝑀

[Goldenthal et al., 2007]

Global vs. Gauss-Seidel
• Gradients fixed

• Linear solution ≠ true
solution

• Multiple Newton
steps necessary

• Current gradients at each
constraint projection

• Solver converges
to the true solution

𝛻𝐶2
𝛻𝐶1

𝑙2 𝑙1

𝑙2 𝑙1

Other Speedup Tricks

• Use as smoother in a multi-grid method

• Long range distance constraints (LRA)

• Shape matching

• Hierarchy of meshes

Amazing Gauss-Seidel!

• Can handle unilateral (inequality) constraints (LCPs, QPs)!
– Fluids: separating boundary conditions [Chentanez at al., 2012]

– Rigid bodies: LCP solver [Tonge et al., 2012]

– Deformable objects: Long range attachments [Kim et al., 2012]

• Works on non-linear problem directly

• Handles under and over-constrained problems

• GS + PBD: garbage in, simulation out (almost )

• Fine grained interleaved solver trivial

• Easy to implement and parallelize

Analysis of PBD

Correction = Acceleration

• Predicted position

p = x𝑛 + ∆𝑡v𝑛 = x𝑛 + ∆𝑡
x𝑛 − x𝑛−1

∆𝑡
= 2x𝑛 − x𝑛−1

x𝑛+1 = p + ∆x

• Projection

∆x = x𝑛+1 − 2x𝑛 + x𝑛−1

Implicit Euler

min
1

2
∆x𝑇M∆x + ∆𝑡2𝐸 x𝑛+1

M∆x = ∆𝑡2 f x𝑛+1

M
𝐱𝑛+1 − 2𝐱𝑛 + 𝐱𝑛−1

∆𝑡2
 = f x𝑛+1

Formulation as an optimization problem for ∆x:

inertia term energy term

Stiffness  Infinity

min
1

2
∆x𝑇M∆x + ∆𝑡2

1

2
𝑘𝐶2 x𝑛+1

min
1

2
∆x𝑇M∆x subject to 𝐶 x𝑛+1 = 0

∆x = 𝜆 M−1𝛻𝐶 x𝑛+1

• 𝐶 x𝑛+1 = 0

• M∆x = 𝜆𝛻𝐶 x𝑛+1

PBD

Now let 𝑘 → ∞

 // 𝐸 x =
1

2
𝑘𝐶2 x

Two Interpretations

𝐶 = 0

rigid body modes

𝛻𝐶 = 𝜆𝛻 ∆x2

Constraint Solver

min
1

2
∆x𝑇M∆x subject to 𝐶𝑖 x𝑛+1 = 0, 𝑖 ∈ 1, . . , 𝑚

• PBD solves a non-linear optimization problem

by solving a sequence of QPs:

min
1

2
∆x𝑇M∆x subject to 𝐶𝑖 x𝑛+1 = 0

Clothing Demo
Nurien

Cloth

• Slow error propagation  stretchy cloth

• Low resolution: no detailed wrinkles

• Solutions

– Use hierarchy of meshes (complicated)

– Has been an open problem for us

– Found an embarrassingly simple solution

Long Range Attachments (LRA)
• Upper distance constraint to closest attachment point

• Unilateral: project only if distance too big

[Kim et al., 2012], 90k particles

Challenge

• Similar idea for compression?

• Long range distance constraint to the ground?

Rigid Objects

• Global correction, no propagation needed

• No mesh needed!

• Optimally match un-deformed with deformed shape

• Only allow translation and rotation

p𝑖

∆x𝑖

Position Based Fluids

• Move particles in local neighborhood
such that density = rest density

𝐶 x1, . . , x𝑛 = 𝜌𝑆𝑃𝐻 x1, . . , x𝑛 − 𝜌0

• Density constraint

• Particle based

• Pair-wise lower distance constraints
 granular behavior

[Macklin et al. 2013]

Mesh Independent Deformations

𝐶 x1, . . , x3 = 𝐆𝑖𝑗 x1, . . , x3

• For each triangle:

[Müller et al, 2014]

𝐆 = 𝐅T𝐅 − 𝐈

FEM

𝐶 x1, . . , x4 = 𝐸𝐹𝐸𝑀 x1, . . , x4

[Bender et al, 2014]

• For each tetrahedron:

Unified Solver [Macklin et al., 2014]

• Plus
– Static friction
– Stiff stacks via mass modifications
– Two-way fluid – solid coupling

• Putting it all together

Acknowledgements
• PhysX Research Group

• PhysX Group
Nuttapong
Chentanez

Tae-Yong
Kim

Miles
Macklin

Questions?

Thanks!

