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Game State | Animation Graphs
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Game Logic Animation Logic









Animation Graphs

Provide structure for animation clips

Allow animations to be “addressable”

Allow related animation to be grouped

Transitions have to be explicitely spelled out

Combinatorical explosion
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Unstructured Animations

If we would combine all animation clips

into a single unstructed library…

How can we infer information from the

gameplay state directly?

Can we extract relevant information

from the physical properties of the 

animations themselves?

How can we achieve the same level of

versatility as animation graphs?
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Motion Matching

Motion Matching [Michael Buttner, 2015]
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Geometric Pose Comparison

• Minimum squared distance between joint positions

• Using only “relevant” joints

• Minimum local joint rotation delta is flawed
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Current joint transform at t

Current joint transform at t + n

Candidate joint transform at t

Candidate joint transform at t + n

Resulting curve



Motion Matching Algorithm
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Motion Database

Query -> 𝐹(𝑦)

arg min 𝑥 𝑠(𝐹(𝑥), 𝐹(𝑦))
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Back-in-time Problem
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Motion Matching

Pros

• Preserves high quality result

• Does not rely on phases

• Relatively easy to implement

Cons

• Prediction must match data

• Construction of cost functions

• Requires a lot of tweaking

• Doesn’t scale well

• Duplicate data problem

• “Back-in-time” problem
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Motion Synthesis Research

Phase Function NN [Daniel Holden, 2017]

Deep Loco [Peng, 2017]

Mode Adaptive NN [Sebastian Starke, 2018]

Deep Mimic [Peng, 2018]

QuaterNet [Pavvlo, 2018]
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The 4 No-No’s
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• Locomotion & Cyclic motions

• Phase as temporal progression

• Pose merging

• Fitting animation along predicted trajectory



Locomotion & Cyclic motions
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Most motion synthesis research emphasizes cyclic 

motions in general and locomotion in particular



Phase as temporal progression
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Most motion synthesis research uses the 

concept of a “phase”; scalar variable in the 

range 0 to 2𝜋 representing the point in time of 

the current pose in the locomotion cycle

Not true → Given a pose that corresponds to Θ

all poses that corresponds to Θ + ∆𝑡 are 

“similar”

“Phase” can have an arbitrary meaning 

(footcontact, entire “action” like for example 

cartwheel) – not a general concept
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Autoregressive methods
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Phase Function Neural Networks

A neural network where the weights are

generated as a function of the phase

The “phase” is the scalar variable in the range 0

to 2𝜋 representing the point in time of the 

current pose in the locomotion cycle

𝑥0

𝑥…

𝑥𝑛

𝑦0

𝑦…

𝑦𝑚

𝑦1
𝑊𝑖 = Θ𝑖 (𝑝)

𝛼0

𝛼0

𝛼0

𝛼0
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Autoregressive methods & Pose merging
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Autoregressive methods
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Autoregressive network training averages the possible continuation 

candidates -> Loss of quality

“…NN is compact, requiring only a few megabytes of memory, even 

when trained on gigabytes of motion capture data…”

“…requires keeping all the motion data…”



Trajectory Control

39

Trajectory annotations are used to guide the

pose generation process

Expert gates can merging different movements

(locomotion & jumping) -> Loss of quality

Trajectory dictates timing, but instead animation needs to 

dictate overall timing

𝑡

𝜎
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Phase Function NN  |  Mode adaptive NN

Both approaches only work for locomotion

Climbing for example has no obvious phase

Basic assumption – any pose that corresponds to 

the same “phase” is similar

Poor quality

“Floating”

Don’t use exponential maps in NN’s

Variations won’t be preserved but get averaged

Memory footprint is determined by number of 

weights – not the amount of animations used

Neural Networks do not memorize anything!
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Slow runtime performance

my SSE implementation was ~0.9ms

4 samples of Θ yields average result, more samples 

require a higher memory footprint

Phase mispredictions result in a tendency

towards the mean pose

Extraordinary long training times (6+ hours)

Edit data, retrain, hope it appears

We can’t predict the output

…or ask why it was produced

Mode adaptive NN’s don’t work for bipeds
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The holy grail

Fast turn-around times

Ground-truth motion synthesis

Minimal memory footprint

Fast runtime

Style

46

Scaleable

Controllable

Versatile

Precise
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Kinematica



Motion Matching

Pros

• Preserves high quality result

• Does not rely on phases

• Relatively easy to implement

Cons

• Prediction must match data

• Construction of cost functions

• Requires a lot of tweaking

• Doesn’t scale well

• Duplicate data problem

• “Back-in-time” problem
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Motion Fragments
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𝐹𝑖 =

𝑣0
𝑖 𝑣0

𝑖+1 ⋯ 𝑣0
𝑖+𝜏

𝑣1
𝑖−𝜏 𝑣1

𝑖−𝜏+1 ⋯ 𝑣1
𝑖

𝑣2
𝑖−𝜏 𝑣2

𝑖−𝜏+1 ⋯ 𝑣2
𝑖

⋮ ⋮ ⋮ ⋮
𝑣𝑚
𝑖−𝜏 𝑣𝑚

𝑖−𝜏+1 ⋯ 𝑣𝑚
𝑖

A motion fragment is represented as a

matrix 𝐹𝑖 ∈ 𝑀𝜏×(𝑚+1) ℝ where each

entry 𝑣𝑗
𝑡 contains the velocity of joint j

at some time 𝑡 ∈ 𝑖 − 𝜏,… , 𝑖 + 𝜏 , and

𝑗 = 0 represents the root transform

𝑣𝑗
𝑡 = 𝐽𝑗

𝑡 − 𝐽𝑗
𝑡+1 𝑇𝑟

𝑡+1−1𝑇𝑟
𝑡



Kinematica Algorithm
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Motion Database

Query -> 𝐹(𝑦)

arg min 𝑥 𝑠(𝐹(𝑥), 𝐹(𝑦))
𝑠 𝐹, 𝐹′ = ෍

𝑘=1

𝑛

𝐹𝑘 − 𝐹′𝑘
2



Nearest Neighbor Search
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෠𝐹𝑖

Nearest Neighbor Search time < 0.05 ms (HP C#)

Sub-Linear Nearest Neighbor Search - 𝑘 = 1

Short training time (< 5 minutes)

𝐹𝑖 =

𝑣0
𝑖 𝑣0

𝑖+1 ⋯ 𝑣0
𝑖+𝜏

𝑣1
𝑖−𝜏 𝑣1

𝑖−𝜏+1 ⋯ 𝑣1
𝑖

𝑣2
𝑖−𝜏 𝑣2

𝑖−𝜏+1 ⋯ 𝑣2
𝑖

⋮ ⋮ ⋮ ⋮
𝑣𝑚
𝑖−𝜏 𝑣𝑚

𝑖−𝜏+1 ⋯ 𝑣𝑚
𝑖

300+ Scalar Values
1200 bytes per fragment
For 70.000 poses -> 82 Mb

෠𝐹𝑖 =

𝑥1
𝑥2
⋮
𝑥𝑛

< 64 bytes per fragment
For 70.000 poses -> ~3 Mb

𝑥0

𝑥…

𝑥𝑛

𝑦0

𝑦…

𝑦𝑚

𝑦1

Product Quantization for Nearest Neighbor Search
[Jegou, Douze, Schmid, 2011]
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Game State | Animation Graphs
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Game Logic Animation Logic



Game State
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Abilities
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Climbing

Parkour

Locomotion

Kinematica’s goal is to provide a

complete alternative to animation graphs

Parkour, Climbing, Melee Combat,

Synchronized movements, One-off actions, etc…

Prioritized list of abilities

Executed in order

This is not a super-imposed concept, i.e.

Kinematica does not call into abilities



Kinematica Components
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Climbing

Parkour

Locomotion

Dismount

Drop down

Free Climbing

Pull up

Ledge Climbing

Mount

Game Logic

Policies execute as part of the game code (ideally as C# jobs)

Policies execute variations of similarity searches depending on game logic

Similarity searches can be based on 1:1 or n:m fragments



All poses are arranged into a large matrix 𝑫 ∈ 𝑀 𝑚+1 ×𝐷(ℝ)

where each column corresponds to a pose 𝒥 = ሼ𝐽𝑖; 𝑖 =

Motion Library
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𝑫 =

𝑇𝑟
1 𝑇𝑟

2 ⋯ 𝑇𝑟
𝐷

𝐽1
1 𝐽1

2 ⋯ 𝐽1
𝐷

⋮ ⋮ ⋱ ⋮
𝐽𝑚
1 𝐽𝑚

2 ⋯ 𝐽𝑚
𝐷

Poses

Time

Motion Library

Locomotion Parkour

Tagged Poses

Climbing

Tagged Poses

Tagging segregates the motion library into 

addressable islands

Markers carry an arbitrary user-defined 

payload and are associated with discrete 

frames

Policies utilize tags and markers in user-

defined similarity searches
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Locomotion



Trajectory Prediction
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Using our knowledge about the intended target 

location (NPC) or desired velocity (PC) we can 

generate a predicted path over the time horizon

Root Transform

Past Trajectory

Future Trajectory
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Collision detection
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During the generation of the predicted future 

trajectory we can perform collision detection with 

the environment and other characters
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Trajectory Prediction
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During trajectory prediction we use a character 

controller with the ability to forward simulate the 

collision world

Allows us to detect collisions in advance and 

plan accordingly

Controller has full knowledge of which objects it 

collides with during normal frame-by-frame 

processing as well as during the prediction phase 

and can be safely rolled back in time to return to 

a previous simulation step
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Forward Prediction
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Snapshot

Time
Remaining

> 0.0f
Move(deltaTime)

Rewind

Yes

No
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Parkour



Anchors & Contacts
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Parkour moves are designed to make precise 

contacts with the environment

The goal is to generate a predicted future 

trajectory for a specific parkour move

We use pose annotations to indicate which 

joint makes contact including the 

corresponding surface normal

We denote the transform between the contact 

transform and the root transform of the first 

contact point as “anchor transform”

Given contact transform -> Move trajectory

Contacts
(normal to surface)

Contact transform
(normal to surface)

Anchor transformMove trajectory





Anchors & Contacts
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The goal is to generate a predicted future trajectory 

that “leads into” a specific parkour move

In case the predicted future trajectory detects a 

collision during the prediction phase…

We generate a “contact transform” which in turn allows 

us to anchor the entire move in world space

Now we can find possible transitions between the 

predicted future trajectory and the move trajectory

We generate a new predicted future trajectory based 

on the result

Surface normal

Collision

Move trajectory

Predicted future trajectory

Possible transitions

Final approach trajectory

Root anchor transform
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Climbing



Climbing States
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Climbing

Parkour

Locomotion

Dismount

Drop down

Free Climbing

Pull up

Ledge Climbing

Mount

Climbing is the most complex state

Several internal states

Transitions

Multiple movement types
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Dismount

Drop down

Free Climbing

Pull up

Ledge Climbing

Mount
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Dismount

Drop down

Free Climbing

Pull up

Ledge Climbing

Mount
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Dismount

Drop down

Free Climbing

Pull up

Ledge Climbing

Mount
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Dismount

Drop down

Free Climbing

Pull up

Ledge Climbing

Mount
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Dismount

Drop down

Free Climbing

Pull up

Ledge Climbing

Mount
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Dismount

Drop down

Free Climbing

Pull up

Ledge Climbing

Mount



Ledge Climbing Model
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Ledge geometry gets constructed on-the-fly

Ledge anchor is (line index, fraction)

Ledge anchor can be advanced based on 

distance

Ledge anchor can be constructed from world 

space position

Full predictive model

Snapshot() / Move() / Rewind()

Ledge Geometry

Ledge Anchor



Free Climbing Model
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Wall geometry gets constructed on-the-fly

Wall anchor is (Normalized UV coordinate)

Wall anchor can be moved inside geometry 

bounds (2d displacement vector)

Wall anchor can be constructed from world 

space position

Full predictive model

Snapshot() / Move() / Rewind()

Wall Geometry

Wall Anchor



World Model
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It is important to note that this is an 

unavoidable complexity for any non-trivial 

character navigation

Any game will require this kind of structure in 

one form or another
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