
G
e

n
e

ra
ti

ve
 A

rt
 –

M
a

d
e

 w
it

h
 U

n
it

y

Machine Learning for
Motion Synthesis and
Character Control
in Games

Michael Buttner, Unity Labs
Principal Research Engineer
michaelbu@unity3d.com

1

→

© 2018 SIGGRAPH. All Rights Reserved

5

Game State | Animation Graphs

7

Game Logic Animation Logic

Animation Graphs

Provide structure for animation clips

Allow animations to be “addressable”

Allow related animation to be grouped

Transitions have to be explicitely spelled out

Combinatorical explosion

11

Unstructured Animations

If we would combine all animation clips

into a single unstructed library…

How can we infer information from the

gameplay state directly?

Can we extract relevant information

from the physical properties of the

animations themselves?

How can we achieve the same level of

versatility as animation graphs?

13

14

Motion Matching

Motion Matching [Michael Buttner, 2015]

15

17

Geometric Pose Comparison

• Minimum squared distance between joint positions

• Using only “relevant” joints

• Minimum local joint rotation delta is flawed

18

Current joint transform at t

Current joint transform at t + n

Candidate joint transform at t

Candidate joint transform at t + n

Resulting curve

Motion Matching Algorithm

19

Motion Database

Query -> 𝐹(𝑦)

arg min 𝑥 𝑠(𝐹(𝑥), 𝐹(𝑦))

20

Back-in-time Problem

21

Motion Matching

Pros

• Preserves high quality result

• Does not rely on phases

• Relatively easy to implement

Cons

• Prediction must match data

• Construction of cost functions

• Requires a lot of tweaking

• Doesn’t scale well

• Duplicate data problem

• “Back-in-time” problem

22

Motion Synthesis Research

Phase Function NN [Daniel Holden, 2017]

Deep Loco [Peng, 2017]

Mode Adaptive NN [Sebastian Starke, 2018]

Deep Mimic [Peng, 2018]

QuaterNet [Pavvlo, 2018]

23

The 4 No-No’s

24

• Locomotion & Cyclic motions

• Phase as temporal progression

• Pose merging

• Fitting animation along predicted trajectory

Locomotion & Cyclic motions

25

Most motion synthesis research emphasizes cyclic

motions in general and locomotion in particular

Phase as temporal progression

26

Most motion synthesis research uses the

concept of a “phase”; scalar variable in the

range 0 to 2𝜋 representing the point in time of

the current pose in the locomotion cycle

Not true → Given a pose that corresponds to Θ

all poses that corresponds to Θ + ∆𝑡 are

“similar”

“Phase” can have an arbitrary meaning

(footcontact, entire “action” like for example

cartwheel) – not a general concept

27

28

29

30

Autoregressive methods

31

𝑓

𝑥0

𝑥…

𝑥𝑛

𝑦0

𝑦…

𝑦𝑚

𝑦1

𝑋

0.8
−0.3
⋮

0.65
−0.7

𝑝𝑡

𝑌

0.15
0.97
⋮

−0.03
0.27

𝑝𝑡+1

32

33

Phase Function Neural Networks

A neural network where the weights are

generated as a function of the phase

The “phase” is the scalar variable in the range 0

to 2𝜋 representing the point in time of the

current pose in the locomotion cycle

𝑥0

𝑥…

𝑥𝑛

𝑦0

𝑦…

𝑦𝑚

𝑦1
𝑊𝑖 = Θ𝑖 (𝑝)

𝛼0

𝛼0

𝛼0

𝛼0

34

35

36

Autoregressive methods & Pose merging

37

𝑓

𝑥0

𝑥…

𝑥𝑛

𝑦0

𝑦…

𝑦𝑚

𝑦1

𝑋

0.8
−0.3
⋮

0.65
−0.7

𝑝𝑡

𝑌

0.15
0.97
⋮

−0.03
0.27

𝑝𝑡+1

Autoregressive methods

38

Autoregressive network training averages the possible continuation

candidates -> Loss of quality

“…NN is compact, requiring only a few megabytes of memory, even

when trained on gigabytes of motion capture data…”

“…requires keeping all the motion data…”

Trajectory Control

39

Trajectory annotations are used to guide the

pose generation process

Expert gates can merging different movements

(locomotion & jumping) -> Loss of quality

Trajectory dictates timing, but instead animation needs to

dictate overall timing

𝑡

𝜎

40

Phase Function NN | Mode adaptive NN

Both approaches only work for locomotion

Climbing for example has no obvious phase

Basic assumption – any pose that corresponds to

the same “phase” is similar

Poor quality

“Floating”

Don’t use exponential maps in NN’s

Variations won’t be preserved but get averaged

Memory footprint is determined by number of

weights – not the amount of animations used

Neural Networks do not memorize anything!

41

Slow runtime performance

my SSE implementation was ~0.9ms

4 samples of Θ yields average result, more samples

require a higher memory footprint

Phase mispredictions result in a tendency

towards the mean pose

Extraordinary long training times (6+ hours)

Edit data, retrain, hope it appears

We can’t predict the output

…or ask why it was produced

Mode adaptive NN’s don’t work for bipeds

45

The holy grail

Fast turn-around times

Ground-truth motion synthesis

Minimal memory footprint

Fast runtime

Style

46

Scaleable

Controllable

Versatile

Precise

47

Kinematica

Motion Matching

Pros

• Preserves high quality result

• Does not rely on phases

• Relatively easy to implement

Cons

• Prediction must match data

• Construction of cost functions

• Requires a lot of tweaking

• Doesn’t scale well

• Duplicate data problem

• “Back-in-time” problem

48

49

Motion Fragments

50

𝐹𝑖 =

𝑣0
𝑖 𝑣0

𝑖+1 ⋯ 𝑣0
𝑖+𝜏

𝑣1
𝑖−𝜏 𝑣1

𝑖−𝜏+1 ⋯ 𝑣1
𝑖

𝑣2
𝑖−𝜏 𝑣2

𝑖−𝜏+1 ⋯ 𝑣2
𝑖

⋮ ⋮ ⋮ ⋮
𝑣𝑚
𝑖−𝜏 𝑣𝑚

𝑖−𝜏+1 ⋯ 𝑣𝑚
𝑖

A motion fragment is represented as a

matrix 𝐹𝑖 ∈ 𝑀𝜏×(𝑚+1) ℝ where each

entry 𝑣𝑗
𝑡 contains the velocity of joint j

at some time 𝑡 ∈ 𝑖 − 𝜏,… , 𝑖 + 𝜏 , and

𝑗 = 0 represents the root transform

𝑣𝑗
𝑡 = 𝐽𝑗

𝑡 − 𝐽𝑗
𝑡+1 𝑇𝑟

𝑡+1−1𝑇𝑟
𝑡

Kinematica Algorithm

51

Motion Database

Query -> 𝐹(𝑦)

arg min 𝑥 𝑠(𝐹(𝑥), 𝐹(𝑦))
𝑠 𝐹, 𝐹′ = ෍

𝑘=1

𝑛

𝐹𝑘 − 𝐹′𝑘
2

Nearest Neighbor Search

52

෠𝐹𝑖

Nearest Neighbor Search time < 0.05 ms (HP C#)

Sub-Linear Nearest Neighbor Search - 𝑘 = 1

Short training time (< 5 minutes)

𝐹𝑖 =

𝑣0
𝑖 𝑣0

𝑖+1 ⋯ 𝑣0
𝑖+𝜏

𝑣1
𝑖−𝜏 𝑣1

𝑖−𝜏+1 ⋯ 𝑣1
𝑖

𝑣2
𝑖−𝜏 𝑣2

𝑖−𝜏+1 ⋯ 𝑣2
𝑖

⋮ ⋮ ⋮ ⋮
𝑣𝑚
𝑖−𝜏 𝑣𝑚

𝑖−𝜏+1 ⋯ 𝑣𝑚
𝑖

300+ Scalar Values
1200 bytes per fragment
For 70.000 poses -> 82 Mb

෠𝐹𝑖 =

𝑥1
𝑥2
⋮
𝑥𝑛

< 64 bytes per fragment
For 70.000 poses -> ~3 Mb

𝑥0

𝑥…

𝑥𝑛

𝑦0

𝑦…

𝑦𝑚

𝑦1

Product Quantization for Nearest Neighbor Search
[Jegou, Douze, Schmid, 2011]

53

54

Game State | Animation Graphs

55

Game Logic Animation Logic

Game State

56

Abilities

57

Climbing

Parkour

Locomotion

Kinematica’s goal is to provide a

complete alternative to animation graphs

Parkour, Climbing, Melee Combat,

Synchronized movements, One-off actions, etc…

Prioritized list of abilities

Executed in order

This is not a super-imposed concept, i.e.

Kinematica does not call into abilities

Kinematica Components

58

Climbing

Parkour

Locomotion

Dismount

Drop down

Free Climbing

Pull up

Ledge Climbing

Mount

Game Logic

Policies execute as part of the game code (ideally as C# jobs)

Policies execute variations of similarity searches depending on game logic

Similarity searches can be based on 1:1 or n:m fragments

All poses are arranged into a large matrix 𝑫 ∈ 𝑀 𝑚+1 ×𝐷(ℝ)

where each column corresponds to a pose 𝒥 = ሼ𝐽𝑖; 𝑖 =

Motion Library

59

𝑫 =

𝑇𝑟
1 𝑇𝑟

2 ⋯ 𝑇𝑟
𝐷

𝐽1
1 𝐽1

2 ⋯ 𝐽1
𝐷

⋮ ⋮ ⋱ ⋮
𝐽𝑚
1 𝐽𝑚

2 ⋯ 𝐽𝑚
𝐷

Poses

Time

Motion Library

Locomotion Parkour

Tagged Poses

Climbing

Tagged Poses

Tagging segregates the motion library into

addressable islands

Markers carry an arbitrary user-defined

payload and are associated with discrete

frames

Policies utilize tags and markers in user-

defined similarity searches

60

Locomotion

Trajectory Prediction

61

Using our knowledge about the intended target

location (NPC) or desired velocity (PC) we can

generate a predicted path over the time horizon

Root Transform

Past Trajectory

Future Trajectory

62

Collision detection

63

During the generation of the predicted future

trajectory we can perform collision detection with

the environment and other characters

64

Trajectory Prediction

65

During trajectory prediction we use a character

controller with the ability to forward simulate the

collision world

Allows us to detect collisions in advance and

plan accordingly

Controller has full knowledge of which objects it

collides with during normal frame-by-frame

processing as well as during the prediction phase

and can be safely rolled back in time to return to

a previous simulation step

66

67

Forward Prediction

68

Snapshot

Time
Remaining

> 0.0f
Move(deltaTime)

Rewind

Yes

No

69

Parkour

Anchors & Contacts

70

Parkour moves are designed to make precise

contacts with the environment

The goal is to generate a predicted future

trajectory for a specific parkour move

We use pose annotations to indicate which

joint makes contact including the

corresponding surface normal

We denote the transform between the contact

transform and the root transform of the first

contact point as “anchor transform”

Given contact transform -> Move trajectory

Contacts
(normal to surface)

Contact transform
(normal to surface)

Anchor transformMove trajectory

Anchors & Contacts

72

The goal is to generate a predicted future trajectory

that “leads into” a specific parkour move

In case the predicted future trajectory detects a

collision during the prediction phase…

We generate a “contact transform” which in turn allows

us to anchor the entire move in world space

Now we can find possible transitions between the

predicted future trajectory and the move trajectory

We generate a new predicted future trajectory based

on the result

Surface normal

Collision

Move trajectory

Predicted future trajectory

Possible transitions

Final approach trajectory

Root anchor transform

74

Climbing

Climbing States

75

Climbing

Parkour

Locomotion

Dismount

Drop down

Free Climbing

Pull up

Ledge Climbing

Mount

Climbing is the most complex state

Several internal states

Transitions

Multiple movement types

76

Dismount

Drop down

Free Climbing

Pull up

Ledge Climbing

Mount

77

Dismount

Drop down

Free Climbing

Pull up

Ledge Climbing

Mount

78

Dismount

Drop down

Free Climbing

Pull up

Ledge Climbing

Mount

79

Dismount

Drop down

Free Climbing

Pull up

Ledge Climbing

Mount

80

Dismount

Drop down

Free Climbing

Pull up

Ledge Climbing

Mount

81

Dismount

Drop down

Free Climbing

Pull up

Ledge Climbing

Mount

Ledge Climbing Model

82

Ledge geometry gets constructed on-the-fly

Ledge anchor is (line index, fraction)

Ledge anchor can be advanced based on

distance

Ledge anchor can be constructed from world

space position

Full predictive model

Snapshot() / Move() / Rewind()

Ledge Geometry

Ledge Anchor

Free Climbing Model

83

Wall geometry gets constructed on-the-fly

Wall anchor is (Normalized UV coordinate)

Wall anchor can be moved inside geometry

bounds (2d displacement vector)

Wall anchor can be constructed from world

space position

Full predictive model

Snapshot() / Move() / Rewind()

Wall Geometry

Wall Anchor

World Model

84

It is important to note that this is an

unavoidable complexity for any non-trivial

character navigation

Any game will require this kind of structure in

one form or another

Machine Learning for Motion Synthesis and Character Control in Games

Michael Buttner, Unity Labs
michaelbu@unity3d.com

