
Thanks for the introduction, and hello everyone! It’s a real honour to be invited to 
speak here at I3D. It’s my third time attending the conference, and I’ve been lucky to 
see some fantastic papers presented every time I’ve attended and so far is no 
exception. As a resident of Montreal, I should also say welcome, I hope those of you 
visiting the city really enjoy your time here.

One of the main reasons we’re here at I3D is to talk about real time 3D computer 
graphics, and I’m a representative of the video games industry where my role as a 
graphics programmer is to take the research presented at conferences like this, and 
to try to take them into production. I’m hoping that what I’m going to talk about 
today will give you a few more insights into how that works and the difficulties we 
face doing so. I’m going to take some research I’ve been doing very recently into 
improving our lighting and materials through multiscattering diffuse and specular 
BRDFs and area lights, and walk you through all the steps I’ve had to take so far on 
that journey. My goal is that I give researchers insight into how to make papers more 
useable and accessible for those of us in industry, but there should be a few tips in 
there for industry professionals of how to make the best use of research too.

I should begin though by telling you a little bit about me and the games that I’ve 

1



worked on to give some background to the challenge.

1



My name is Stephen McAuley, and I’ve been in the games industry since 2006 since I 
finished university where I studied mathematics. I started in the UK at a company in 
Liverpool called Bizarre Creations, whose major focus was on racing games, such as 
Project Gotham Racing and Blur, but they also did some third person character 
games, which culminated in James Bond 007: Blood Stone. This was a really great 
place to start in games because I had some mentors who were very focused on visual 
quality, physically based shading and providing solid tools for artists.

These were all things I took to Ubisoft Montreal in 2011, where I started work on Far 
Cry 3, and I’ve been working on Far Cry games ever since. Now, Far Cry games are big 
open world first person shooters, and this was a big new challenge to me. Working on 
racing games was fun and you could do some stunning visuals, but in the grand 
scheme of things, they’re relatively simple projects. You have one type of activity -
driving cars, and the game is effectively on rails so you can generally predict what’s 
going to happen. In an open world game, everything is much more complex and this 
poses a great deal more challenges for computer graphics.

Let’s take a look at some of the challenges that we face.

2



Obviously in an open world game you have huge outdoor environments. So if you’re 
implementing a global illumination system, you need to figure out a way to store the 
data so it fits on disk and in memory for a world around 10km x 10km in size.

3



But we also have indoor environments, and here we want really detailed lighting and 
a much higher resolution global illumination than outdoors. This means that we’re 
going to favour adaptive, scalable solutions that adapt to our environments. Of 
course, interiors also open up more room for bugs like light leaks.

4



Our lighting environment isn’t static though. We have a dynamic time of day system, 
which means that we have day, but we also have night…

5



…and this gives our lighting artists placing lights into the scene, like you can see here, 
a huge challenge as they have to make things work and look realistic in a huge variety 
of conditions. Plus, you have to ensure that the lighting conditions change smoothly, 
which is really difficult at dawn and dusk where the light changes rapidly. Plus, we 
have to deal with contrast between interiors and exteriors at all times of day, which 
causes exposure problems and visibility issues for gameplay.

6



We also have huge distances to cover, with approximately 10km plus view distances. 
This means that we need a variety of different shadowing solutions that will work at 
all distances, and we also need different fog solutions to ensure that we get detail 
close to the player but also the beautiful atmospheric scattering you want at long 
distances.

7



And we have aeroplanes, so everything has to look good from up high too.

8



Far Cry is also a very story-driven game, so we have cinematics, where we need 
things to look really good close up. This is where we struggle with things like depth 
precision, and seeing all those wonderful shadow mapping artefacts we know and 
love.

But this baptism scene from Far Cry 5 also reminds us of the challenges we have in 
our natural environment.

9



Most of the time we’re above water, and if we want refraction that poses problems of 
multiple layers of transparency, if we have transparent objects both above and 
beneath the water. But even worse, we can of course go under the water…

10



…where our rendering order of objects is flipped, our assumptions change and we 
face new challenges. For example, do we want to take our volumetric fog solution for 
above water and use it for some cool underwater fogging? Do we run both and pay 
an extra performance cost? Do we turn one off and the other on? How do the 
transitions look when we do that? These are all things we have to ask ourselves.

11



Then when it comes to shading, we have many different material types, from skin, 
hair and cloth on characters, to translucent leaves and multi-layered car paint. These 
all have to work and look good as they’re all in the game and will be very prominent 
at certain points.

12



The final complexity is our Editor. We have an Editor that our content creators use 
themselves to build the game, but many of our Far Cry games have also featured an 
In Game Editor where players can build their own levels. This means that we can’t 
necessarily even rely on geometry being static – because there’s a mode where 
players and our own developers can move things around at will. So if we cache our 
distant sun shadows, because we think the geometry won’t move or the lighting 
won’t change, well, one of our artists can just pick up the object in the Editor and 
move it, then change the time of day… and expect it to work and look good. If it 
doesn’t, even if it isn’t something the player will necessarily see, we’ll still be hearing 
about it as it hinders the artist making the world.

13



So I hope by now you’re getting an idea of how difficult it can be to make things work 
in a Far Cry game, and the vast complexity that we face. To go back to that example of 
shadows, I might need a number of different shadowing solutions – for close to 
camera, from very far away from the camera, for sun light, for moon light, for local 
lights… and I probably need them to work to a degree with fast moving objects and 
fast moving time of day too. There are of course some permissible compromises to all 
these, but we’re still going to have to *think* about them in order to compromise 
them, which means we still have to hold all these cases in our head…

…and that takes a lot of brain power and can be pretty exhausting at times!

14



But now you have a background on the general things we have to think about, it’s 
time to focus on a case study of what happens when we take some research and try 
to get it into our games. There’s actually no better topic than the one I’m working on 
right now, which is on multiscattering BRDFs and area lights. It’s posed a number of 
really interesting challenges, so we’re going to walk through what has happened 
when I’ve implemented some research, what problems I’ve had to overcome, and see 
what insights we learn from that along the way.

15



At the end of Far Cry 5, I was feeling our material system was getting a little out of 
date. Sure, it used to be pretty good, but we were still pretty much based on the 
Disney BRDF model from 2012, but with Lambertian diffuse rather than the Disney 
diffuse model. A lot of research had been coming out and I thought it was about time 
I did an upgrade and saw what was out there, and what benefit it could bring us.

There were some problems mentioned by artists too. Generally people still wanted 
more specular being visible, and another wish was a slightly softer falloff for diffuse. 
Plus, of course everyone wants the game to look more realistic, and better materials 
and lighting are a key route to that.

16



The paper that had interested me most in the last few years, was this excellent paper 
from Eric Heitz et. al. It was the first paper to really bring multiple scattering to my 
attention, and made me realise how much energy we’re losing with our standard 
specular models. This was a revelation to me – I’d spent a lot of time evangelising 
energy conservation… only to find that actually, I’d been pretty happy to lose a lot.

I had absolutely no idea what to do about the problem though. The paper did some 
rather brute force solutions, but it didn’t really provide a clear path to finding a real-
time approximation.

Of course, someone was going to do that eventually…

17



There’s where Chris Kulla and Alejandro Conty from Sony Imageworks come in. They 
presented their approximation to multiscattering specular at SIGGRAPH 2017, by a 
simple trick designed to preserve energy. It reduced to some simple formulae and 
easily calculable LUTs, so this very much seemed like a winner.

18



It’s a pretty simple idea. We observe that we need a BRDF that makes up for the 
missing lost energy.

19



So we find a BRDF that fits, based upon the energy reflected in a given direction by a 
BRDF, and the average energy. This all works great…

20



…but actually we do want some lost energy, as energy is lost (absorbed by the 
surface) each bounce. So we sum the loss for infinite bounces and scale our 
multiscattering BRDF by the following equation. F here is of course the Fresnel, which 
gives us a fraction of the average energy lost at each bounce.

21



But what do we need to do if we need to implement this? Well, we need to calculate 
three things. One minus the energy in a given direction, for a given surface 
roughness, the average energy for a given roughness, and the average Fresnel for a 
given specular colour. This is going to involve some integration over the hemisphere 
and some fitting, so I pulled out Visual Studio and Mathematica.

22



First I had to integrate the BRDF over the hemisphere to get one minus the reflected 
energy, and we store this in a 2D LUT parameterised by the cosine of the angle and 
the surface roughness (or smoothness, in our case).

23



Then we needed to take that energy reflected in a given direction, and integrate that 
over the hemisphere to get the average energy for a given roughness. Then I took 
that data into Mathematica and found a fit.

24



Throw in a simple analytic integration of Schlick Fresnel to give the average Fresnel, 
and we end up with the following functions and look up tables we can use in our 
shaders…

So implementing this paper wasn’t particularly hard, but it did take knowledge of 
Mathematica and the time to write some C++ code to generate the LUTs.

Let’s look at the results!

25



We start here with a row of spheres, smoothness increasing from left to right…

26



We turn multiscattering specular on… and… well… do you see any difference? 
Actually, if we toggle back and forth, we *do* see a small change on the roughest 
spheres, but it’s really hard to tell. This isn’t giving us the big win that we might have 
wanted.

But before we give up, we should try this on metals.

27



Again, we start with some gold spheres with the multiscattering specular off…

28



…and when we turn it on, wow, there’s a huge difference here. Essentially, the greater 
specular reflectance means that less energy is being lost each bounce, so it’s having a 
much bigger effect.

In fact, papers about multiscattering specular do mention this helps rough metals the 
most, so perhaps I should have paid more attention to those.

So this might not give the huge win on our overall image we’re looking for. A typical 
Far Cry “postcard” shot involves lots of nature, such as trees, rocks and dirt that are 
dielectrics. But we do have vehicles and weapons that are metals, and this is going to 
improve their visuals a lot. In fact our lead artist in charge of them absolutely loves 
the effect this is giving, so that’s one win we can be very happy with.

29



With multiscattering specular working successfully, we decided to switch and 
implement a new diffuse model.

30



Lambertian diffuse is pretty poor, and we wanted the following improvements:

1. Multiscattering is taken into account – we’ve learned from specular that we’re 
losing energy from single-scattering, can we solve this for diffuse too?

2. It reacts to the surface roughness. This should give us more interesting materials, 
and also hopefully more detail preservation in the distance. For instance, we have 
problems on objects such as rocks and tree trunks with strong normals. As they 
go into the distance the mip maps get flat and we no longer see the strong diffuse 
lighting we saw previously. We’d ideally like to do some sort of appearance 
filtering and this might fit in nicely with our existing appearance filtering for 
specular.

3. It reacts to the distribution of normals – if we’re using a GGX distribution for 
specular, can we do the same for diffuse?

4. Diffuse vs specular is energy conserving. Maybe this means diffuse is too bright vs 
specular, which would diminish the amount of specular we’re seeing, which is one 
of the original things we were looking to improve.

31



Thankfully, someone else had come up with a model that fitted all those 
requirements. Danny Chan from Sledgehammer games gave an excellent presentation 
at SIGGRAPH last year which had a lot of great ideas for improving our materials in 
games, but he also included a multiscattering diffuse model that essentially met all 
our requirements.

32



The base of the new diffuse model goes back to the same paper that inspired our 
interest in multiple scattering specular BRDFs. Danny Chan used the source code 
provided to generate data for a multiple-scattering diffuse model, and then found a 
fit.

33



The fitting process as explained in the presentation is pretty complex, but at the end 
it results in a relatively simple function that we can use in our shaders.

[Thanks to William Bussière for this code]

34



But let me highlight one line. In his paper, Danny fitted against a different 
parameterisation of surface smoothness than we do. Hence we have to add some 
extra instructions to convert between the two… or of course, we have to spend the 
time running the model ourselves and doing our own fit, which would be another 
significant amount of work.

35



Let’s look at some results. Here are spheres increasing in smoothness from left to 
right, which with Lambert diffuse has absolutely no effect – they all look the same.

Now let’s turn the multiscattering diffuse on…

36



And we see some nice retroreflection happening for the rough spheres, and a softer 
falloff for the smoother spheres. In fact, one of our art directors always complained 
about the harsh falloff for diffuse, nearly preferring gamma-space rather than linear-
space lighting because of the softness of the falloff. So this looks like it’s going to be 
something that’s going to help the game.

Another thing that’s interesting though is seeing how the ground plane in these 
pictures is changing, getting darker with the multiscattering diffuse. I point this out as 
this is actually one of the biggest effects of multiscattering diffuse you can see in the 
game. If you think of a postcard shot, with sky and terrain, then this is changing the 
ratio between those two and affects the whole image. We’ll have to see in the future 
how this benefits our lighting artists.

37



So we have our new diffuse and specular models, so we’re done, right?

Sadly… not… we’re not even close…

38



Far Cry actually has lots of BRDFs that we need to replace, not just GGX for specular 
and Lambert for diffuse. So if we want to upgrade our diffuse lighting, then ideally 
we’d update our pre-integrated subsurface scattering too, plus we need to find a way 
to mimic wrapped lighting for Lambert. For specular, if we want to be energy-
preserving in all cases then we might need to do it for hair and cloth too.

39



But we also have different light types. For direct lighting we have simple analytic 
evaluation, this is straightforward. But we also have spherical harmonics and cube 
maps for indirect lighting. Frankly, we’re not always great at making our indirect 
lighting obey the BRDFs – we do nothing for evaluating the skin with SH right now, for 
instance. But it feels like we’re missing a huge opportunity to increase the amount of 
specular lighting we have on direct lighting only, but not on the environment.

40



Let’s summarise our problems. We don’t have multiscattering BRDFs on our indirect 
lighting, our subsurface scattering BRDFs – which includes our wrapped diffuse and 
skin – and finally we don’t have a solution for hair. I’ll leave off cloth as it’s not so 
important – the BRDF is a bit of a hack anyway that almost compensates for energy 
loss in cloth materials. Also note that we don’t have a solution for indirect diffuse on 
skin currently either in our engine, so there are pre-existing problems that we’re 
already living with.

41



The first problem we’ll try to solve is indirect specular, as this will almost certainly 
have the biggest impact on the game, particularly on our rough metals.

42



So let’s give it a go. This is the base formula we’re trying to solve for environment 
lighting. In this case, the environment light comes from a cubemap, and we’re 
integrating over the hemisphere. The problem is, for games we can’t do this 
integration per-pixel in real-time – it would require too many samples of the 
cubemap. So we have some approximations.

43



We approximate the result by using this split-sum integral, from Brian Karis’ work in 
2013. We pre-integrate the cubemap for different roughnesses (with results for 
higher roughnesses stored in the lower-mip levels of the cubemap), and we integrate 
the BRDF part into a LUT. This also works pretty well for screen-space reflections too 
– they just replace the pre-integrated cubemap, and we still use the same LUT.

44



We call the LUT the environment BRDF, and if we use Schlick’s Fresnel approximation, 
we’re able to split it into two components…

45



This means that the LUT is just two dimensions – the cosine of the outgoing angle 
(the view direction), and the roughness of the surface. The F0 term, the specular 
reflectance, is factored out.

46



At first I thought adding the multiscattering BRDF into this would be easy. We’re 
preintegrating, so we just add the MS BRDF into the BRDF we’re integrating, at no 
extra cost! So this is what the multiscattering part of the environment BRDF looks 
like.

47



However, once we expand the average Fresnel term, we realise that things aren’t so 
simple after all. If we’re going to just add this to our existing environment BRDF, we 
want a nice linear dependency on F0… and we don’t have that here. So I had an idea, 
why don’t we do a power expansion of the function and see what we get?

48



We get an approximation like this, which is nice and simple and we can add to our 
environment map BRDF. We could even take more power terms of F0 and bake them 
into our environment BRDF if we wanted, getting an environment BRDF of three or 
four components instead of two.

At the time, I thought that two coefficients would be enough. I thought that the F0 
term for dielectrics tends to be less than 0.1, so the subsequent power terms 
wouldn’t really matter… at the time I guess I forgot that multiscattering specular 
makes the biggest difference for rough *metals*, with much higher specular 
reflectances…

49



This means that when we update the environment map BRDF with the 
multiscattering terms… umm… well, you can barely see any difference. In fact, in 8 
bits I’m not sure there is a difference at all, but in 16 bits there definitely is… but 
you’ll just have to trust me.

50



If we see how this looks on metals, this is with the standard environment map BRDF…

51



…and this is with the multiscattering environment BRDF. We see a small difference for 
metals, but nowhere near the big difference we should be seeing, comparing for our 
results with a direct light.

So I was puzzling over a solution for this…

52



… and around the same time this paper came out! It’s always really exciting to see 
someone working on exactly the same things you were working on… and this was a 
paper solving a really relevant problem for games, so kudos to the author and JCGT. 
It’s also pretty great to extend existing work, making Kulla and Conty’s work 
applicable to real-time image based lighting.

53



This paper makes the clever observation (as have others) that the sum of the red and 
green channels in the environment BRDF is in fact the same as the outgoing energy in 
that direction. It also observes that this term can approximate the average energy.

54



The paper then arrives at the following simple formula for the multiple-scattering 
part of the lighting. It helps of course that terms like the average Fresnel are easily 
calculable. But the paper notes that multiply-scattered light is diffuse, so it decides to 
take the irradiance of the lighting rather than radiance, recommending sampling a 
lower mip-level of the cubemap or storing the irradiance in spherical harmonics.

Now, that’s all well and good, but I’m a game developer and I’m lazy. I also want to 
save as many instructions, particularly texture samples, as possible, so I don’t like the 
irradiance part very much.

55



We’re getting the biggest impact of multiscattering on rough metals, this means that 
specular lighting we’re sampling is pretty diffuse anyway, so maybe this doesn’t 
matter too much. Perhaps we could just sub in the radiance for the irradiance and 
things will still look OK.

So let’s look at some results:

56



We’ll of course be looking at metals, and this is with the standard environment map 
BRDF…

57



This is the Fdez-Agüera approximation which is great, since now we’re really 
compensating for that lost energy.

58



And here’s my approximation to Fdez-Agüera… which… looks virtually no different. It
seems like my approximation was valid, at least in my case.

59



The great thing about this is it gives us a formula for a multiscattering BRDF that can 
just scale the single scattering BRDF, which is pretty awesome, as we might be able to 
apply it to other things. The funny thing with this is that after I’d figured this out…

60



… a tech report from Emmanuel Turquin came out that observed from Heitz’s original 
paper that the multiscattering lobe looked very much like a scaled version of the 
single-scattering, and thus came up with this approximation. This isn’t a great deal 
different from what we just derived from the Fdez-Agüera. Again, this is awesome 
because we have someone else researching in the same area, coming up with a very 
pragmatic approximation that we can try out straight away. Another example of 
building upon some very successful existing work and contributing to the discussion.

Let’s see some results!

61



This is my approximation to Fdez-Agüera

62



And this is Emmanuel Turquin’s. The two are pretty different, particularly in terms of 
colour, and Emmanuel Turquin’s seems to be a little bit brighter. I haven’t had the 
time to do a ground-truth comparison, but there are two options here!

I should also mention here that Stephen Hill has recently done some work in the 
same area, and in a recent blog post he advocates a four-term environment BRDF 
that solves the issue of multiscattering for environment lighting in a slightly different 
way. That’s well worth reading if you can, and if you want another solution to the 
problem.

63



However, when I started, there was something in the Fdez-Agüera paper that very 
nearly derailed me completely. Let’s look at one of the equations, calculating the 
average Fresnel. 

64



What really threw me was the added factor of pi, which was present in this and in 
other equations. When I’d been implementing the Sony Imageworks paper myself, I’d 
been dividing these integrals by pi as a normalisation factor, which gave me what 
seemed to be the correct results. But I already had enough self-doubt about my 
mathematical ability that I was a little unsure about what I’d done. So seeing these 
equations in a published peer-reviewed paper that were different than mine was 
really confusing, and I didn’t know what to do. Was everything I’d done wrong?

Well, I plugged away, and became more convinced that the factor of pi was wrong. I 
was going to send an e-mail to the author querying… when I saw this tweet…

65



I was so relieved! Thank you for the good Samaritan who reported it before I did. 

66



Let’s return to our list of problems. The next is about multiscattering specular on 
hair…

67



Sadly this is on our TO DO list for now. We could examine using our scaling factor on a 
single-scattering BRDF, but it’s a little more tricky with the transmittance and second 
specular lobe. So for now I have to leave you hanging, as we’re going to have to 
return to this at a later date.

Image credits: Sue Seecof, 
https://www.flickr.com/photos/126344637@N05/26013859361, licensed under 
https://creativecommons.org/licenses/by/2.0/

68

https://www.flickr.com/photos/126344637@N05/26013859361
https://creativecommons.org/licenses/by/2.0/


But what about our final three problems – multiscattering for our subsurface 
scattering objects, and for indirect diffuse? Well, it turns out we’ll address solutions 
for these as we move to our next topic…

69



…which is area lights.

This is something that complements us improving our materials – now we want to 
look at improving the lights themselves.

70



We’d really like to give our lighting artists more options in cinematics, and having area 
lights should give them more control over the diffuse falloff via the size of the light. 
We’ll also get more specular, with broader, more visible highlights. This could have an 
additional benefit where artists will start authoring smoother materials as 100% 
smooth surfaces will no longer look slightly odd with their infinitesimally small 
specular highlights.

71



When looking at areas lights, it was a no-brainer to investigate using Linearly-
Transformed Cosines, a paper from Eric Heitz and others from 2016, which described 
a real-time method of shading with polygonal lights, which could technically work 
with any BRDF.

72



We chose LTCs because we knew full source code was available, with demos, making 
them really quick to get in the game and try out. In fact, the most difficult bit was 
working out that I had to transpose matrices when converting the GLSL demo into 
HLSL. The full source code would also prove really useful later on when we had to 
make changes, because flexibility is important too. They already gave us quad lights, 
disk lights, line lights and texture mapped lights, plus a few scalable performance 
options, so that gave me a lot of confidence we could make things work. Plus, it was 
clear from the demos and the code that they were robust and suitable performance-
wise for implementation in a game.

73



Let’s explain briefly what LTCs are so everyone is on the same page...

LTCs are pretty simple to understand, which is the magic of the whole technique. You 
start by observing that to evaluate a polygonal area light, you need to integrate the 
polygon over a spherical distribution which is your BRDF. That’s a potentially 
unsolvable mathematical problem for many BRDFs, but we can observe that we have 
a clamped cosine distribution that CAN be analytically integrated over polygonal 
shapes.

[Thanks to Eric Heitz for the diagram]

74



And we can linearly transform this distribution to fit arbitrary BRDFs, while 
maintaining its ability to be integrated.

[Thanks to Eric Heitz for the diagram]

75



So we want to fit our BRDF to a linearly transformed cosine, then when integrating 
over a polygon, we can apply the inverse transform and the answer just becomes 
integrating a polygon over a clamped cosine distribution, which we know how to 
solve.

[Thanks to Eric Heitz for the diagram]

76



But LTCs always integrate to 1, whereas BRDFs might integrate to something less than 
1. We need to scale by the magnitude of the BRDF, and also take the Fresnel term 
into account. So we just integrate the BRDF over the hemisphere and store the data 
in a LUT…

77



In fact, we can apply Schlick’s approximation to Fresnel and get two components, 
which we can composite together based upon the surface’s F0 term and scale the LTC 
by.

Now, this might look very familiar… precisely because it is. This is a slightly different 
parameterisation, but a very, very similar idea to that of the environment BRDF. 
That’s going to be very helpful later.

78



The implementation is relatively straightforward, thanks to all the excellent code and 
demos provided. Offline, you generate two look up tables for your BRDF, both 
parameterised on the outgoing angle and the surface roughness. The first contains 
coordinates of the inverse matrix transform, from the linearly transformed cosine 
approximation to your BRDF with that angle and roughness, back into a clamped 
cosine over the hemisphere. The second look up table is very similar to the 
environment BRDF that we discussed earlier, to scale the BRDF by its magnitude at a 
given viewing angle.

79



Let’s see how this looks with some dielectric spheres of increasing smoothness. I’m 
going to replace the sun light with a quad light:

80



And that looks pretty awesome, particularly the specular highlight on smooth 
surfaces. We can also do a disk!

81



That also looks pretty cool!

You’ll see that the diffuse is changing too. Implementing LTCs for Lambertian diffuse 
is trivial, since Lambertian diffuse IS the clamped cosine over a sphere. We get a nice 
softer falloff from the size of the area light, which I know artists will love.

82



So we have area lights implemented for GGX and Lambert diffuse, so everything’s 
great, right?!

83



But… we’re back at the combination problem. We don’t just have a GGX BRDF. The 
Lambert BRDF is trivial and already solved, since it is just a clamped cosine over the 
hemisphere, but what about the wrapped diffuse? The pre-integrated scattering? The 
hair and the cloth? These are similar problems to those we faced for our new diffuse 
and specular BRDFs.

84



But in fact it’s got worse. Now we also have to make area lights work for 
multiscattering diffuse, and multiscattering specular too.

85



Essentially, we’ve just added another light type that we have to evaluate all our 
BRDFs against.

86



So let’s summarise where we’re at. We have no LTC implementations for three base 
BRDFs – the cloth, the multiscattering diffuse and the hair. We also don’t have 
multiscattering specular, which we’ve just implemented for our non-area lighting 
path. Finally, we have no idea how to combine LTCs with wrapped diffuse and our 
pre-integrated skin scattering.

87



But we have cause for celebration! The source code for LTCs is available, most 
importantly, the code to fit LTCs against an arbitrary BRDF. So I can just plug my BRDFs 
into that, run the fitting and create the LUTs, and I should be good to go.

88



So let’s first start to trying to get cloth and multiscattering diffuse working.

89



So start by generating our LUTs for multiscattering diffuse. Not much is going on in 
the inverse matrix compared to GGX, but you’d expect that as roughness and viewing 
angle have a much smaller effect for this BRDF.

90



Let’s start with our result for Lambertian diffuse…

91



We can see the desired effect happening. The lighting is getting slightly flatter and 
more retroreflective for rough surfaces, but with a slightly stronger falloff for smooth 
surfaces. Smooth surfaces are also getting darker at a grazing viewing angle. This is 
great because the diffuse lighting on the material is responding exactly as for point 
lights, so we’ve achieved what we were looking for.

92



We can also try this for cloth! Let’s see how this works…

93



This time we’ll compare against our point light cloth implementation. It’s the rougher 
surfaces that have the biggest retroreflection and sharpest effect in our cloth model, 
which you can see here.

94



This seems pretty good! It’s different for sure, it seems a little more diffuse. But that’s 
what we’d expect since we have a light with a size now. This still means that we’ll get 
the cloth effect on various materials, which is what we’re looking for.

95



The next problem is multiscattering specular. We’ve just implemented this new BRDF 
that we want, but we need to get it working with LTCs…

Now, at first we might think that this is exactly the same as cloth and multiscattering
diffuse, just use the fitting code with a different BRDF, but actually this has the same 
problem as a topic we’ve already discussed – indirect specular and the environment 
BRDF.

96



Previously, we were able to break the BRDF down into a linear dependency on F0, 
and store two components in a LUT. But once again, the multiscattering BRDF is 
dependent on F0, in a non-linear way, so we can’t use this trick.

97



But we have a solution! We can use the same solution as for the environment BRDF!

98



Now, this gives us a formula for a multiscattering BRDF that can just scale the single 
scattering BRDF, which is awesome, because it’s fast and simple and can be applied to 
our LTCs. We can get the energy term from our magnitude and Fresnel LUT, just like 
we could from our environment BRDF.

99



We could also use the formula from Emmanuel Turquin! Let’s try them out!

100



Let’s start by looking at single scattering specular.

101



Now let’s use my approximation to Fdez-Agüera to get a multiscattering BRDF.

102



And finally, let’s look at Emmanuel Turquin’s solution. Once again, this is slightly 
brighter but with slightly less colour than the Fdez-Agüera approach.

103



The next problem to solve is wrapped lighting. What’s interesting is that we need to 
solve this problem for multiscattering diffuse as well as for area lights, so maybe 
there’s a solution that we can use for both.

104



Let’s start with a quick recap of wrapped diffuse. We take Lambertian diffuse, which 
is the cosine of the incoming light angle, and we just wrap it around the sphere. The 
wrap factor varies between 0, which has no effect, to 1 which wraps the lighting all 
the way around.

This is great and all, but how is this going to work for other BRDFs? For example, our 
new multiscattering diffuse model has a term dependent on the incoming angle and 
another term on the outgoing angle. Do we need to wrap both? What about for area 
lights?

I had an idea… rather than manipulating the cosine of the incoming light angle, like 
we are here, why don’t we just change the normal directly?

105



If we rotate the normal towards the light, that will surely have the same effect? Then 
we can use that normal in all our normal lighting equations, with whatever BRDF we 
want.

106



This boils down to just a simple axis-angle rotation. However, the rotation angle 
depends on how far we are around the sphere. When the normal is facing the light, 
when cos theta is 1, we don’t want to rotate at all. On the other hand, when we’re at 
the furthest point around the sphere we want to wrap, when cos theta is –w, then we 
want to rotate to the point where theta is pi/2.

However, in shader code we in fact want to avoid the costly inverse cosine, so instead 
we can blend between the sine of the angles…

107



...which is much, much faster!

108



This ends up being a relatively simple shader function we can use to adjust our 
normal based upon the light direction and a wrapping factor.

109



But what about normalisation? If we’re wrapping the lighting further around the 
sphere then we’re effectively adding energy.

110



Well, it turns out we can normalise by looking at the surface area of a spherical cap 
on the sphere.

Image attribution:
By Jhmadden - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=44784311

111



If we recall the definition of cos theta at the furthest extent around the sphere, and 
substitute that into the surface area of the spherical cap, then we get the following 
formula.

Image attribution:
By Jhmadden - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=44784311

112



Then, if we compare that to the surface area of the hemisphere, then we get the 
following simple normalisation factor.

Funnily enough, I actually wrote a blog post on normalising wrapped Lambert diffuse 
lighting in the past and this is the normalisation factor I came up with then. It was 
kind of to my surprise that I suddenly found another justification for it, and one that 
now works in different circumstances.

113



Here are the results, which look much better.

Now, I’ll admit that this is a little inaccurate. As we’re blending the sine of the angles 
instead of the angles for performance, the normalisation factor won’t quite be right 
for the BRDF. But this is games so for performance’s sake, we think this should be 
“good enough”.

Let’s give this a try!

114



Let’s start by looking at point lights, and our base multiscattering diffuse model.

115



We can wrap 50% of the way around the sphere…

116



… and 100%, and everything seems to be holding up. The rougher spheres still feel 
rough with flatter lighting, which is exactly what we’re going for.

117



Next we’ll check the result with area lights and LTCs.

118



Once again we can wrap 50% of the way around the sphere…

119



… and 100%, and we’re still getting the results we expect. This is pretty awesome, 
now we can pretty much apply wrapped lighting to everything! Let’s consider this 
problem solved.

120



Now that we’ve done wrapped diffuse, let’s move onto looking at pre-integrated 
scattering, which in some ways is very similar…

121



Pre-integrated scattering for skin is a technique presented by Eric Penner at 
SIGGRAPH 2011. The trick behind pre-integrated scattering is to integrate Lambert 
diffuse over spheres of different curvatures, with a skin scattering diffusion profile.

122



If we had to solve this for multiscattering diffuse, we’d have to integrate over the new 
BRDF… but that has two extra parameters compared with Lambert – viewing angle 
and roughness, which would make this an unfeasibly large 4D LUT. Of course, perhaps 
if we were to actually research this, maybe we could find a fit, or reduce the 
dimensionality… but this still isn’t going to solve the answer for area lights.

123



But there is another solution here to skin scattering used in games: separable screen-
space subsurface scattering. This runs in screen-space and blurs an existing lighting 
buffer, so this technically works with any BRDF… and area lights too. Even better, this 
also will work with our indirect diffuse lighting, which is something that we’re missing 
now.

It seems like back on Far Cry 3 when we had to choose between pre-integrated 
scattering and screen-space scattering, we bet on the wrong horse. Well, the first was 
much faster, both in implementation time and performance, but now…? It seems like 
the latter is much more flexible. Essentially, it’s orthogonal to our choices of BRDF 
and lighting, and that orthogonality can often be really important in rendering 
techniques.

[Thanks to Jorge Jimenez for permission to use this image]

124



Sadly this is on our TO DO list for now, and it’s something we’ll have to return to at a 
later date. But it seems like it will solve our problems, and be more future proof.

Image credits: Sue Seecof, 
https://www.flickr.com/photos/126344637@N05/26013859361, licensed under 
https://creativecommons.org/licenses/by/2.0/

125

https://www.flickr.com/photos/126344637@N05/26013859361
https://creativecommons.org/licenses/by/2.0/


Our final unsolved problem is how to apply LTCs to hair.

126



Well, sadly this is also on our TO DO list. Marschner hair has three lobes, essentially a 
reflection, a transmission, and a second-bounce reflection. Maybe this needs to be 
really expensive and we need to do LTC look ups for each lobe? Or perhaps we’ll have 
to find a different area light approximation, or just fall back to our point light solution. 
But once again, like for multiscattering specular, there doesn’t seem to be an intuitive 
answer for hair. Any help is of course appreciated!

Image credits: Sue Seecof, 
https://www.flickr.com/photos/126344637@N05/26013859361, licensed under 
https://creativecommons.org/licenses/by/2.0/

127

https://www.flickr.com/photos/126344637@N05/26013859361
https://creativecommons.org/licenses/by/2.0/


But there’s one more thing… remember this unsolved problem? How do we apply our 
multiscattering diffuse to our indirect lighting, which is stored in spherical harmonics?

128



Well… once again there’s a link to a problem we’ve already solved…

We can project a clamped cosine distribution into spherical harmonics, and use that 
to evaluate lighting projected into SH. But what we want is to project any BRDF (in 
this case our multiscattering diffuse BRDF) into spherical harmonics.

[Thanks to Eric Heitz for the diagram]

129



But it just so happens that now we have a mapping from a linear-transformed cosine, 
with which we can approximate a BRDF, to a clamped cosine distribution! So perhaps 
we can use that to solve our problem.

[Thanks to Eric Heitz for the diagram]

130



For area lights, we take the coordinates of our light source and rotate them using the 
LTC inverse matrix. We’re going to treat our SH bands like an area light source and 
rotate them using the LTC inverse matrix, then evaluate by the cosine lobe. Then 
finally, we just scale the result by the BRDF magnitude like when we use LTCs for area 
lights.

131



But, as SH is rotationally invariant, we can actually just rotate our cosine lobe instead, 
which is much faster!

132



Here’s an example of some shader code. Note that as we’re rotating the SH also into 
the space of the normal with the matrix R, we’re rotating a cosine lobe that’s pointing 
straight up. That means that you can actually do some nice further optimisations to 
this code.

Now it’s time to look at some results.

133



I’ve changed the lighting set up a bit for these shots. Here we are at dawn, with sky 
lighting only. You can see the sun is about to rise to our right hand side and the sky is 
a beautiful pink in that direction.

Now if we turn our multiscattering indirect diffuse on…

134



You can see we get flatter lighting on the rough left hand spheres, but then a stronger 
falloff for glancing viewing angles as the spheres get smoother towards the right. The 
ground plane is also getting a little darker, as we saw for the multiscattering direct 
diffuse, so this is definitely going to have an impact on our world lighting.

Let’s compare against the ground truth…

135



This is really close! In fact, the only real difference we see is that the bottom of the 
spheres are lighter for the ground truth, but if we were to compare Lambert we’d 
actually see the same – this is caused by SH ringing.

I put an asterix by ground truth because I always feel a little wary about claims of 
absolute truth in these situations. We generated this by sampling the SH over the 
hemisphere and scaling by the BRDF.

Let’s go back to look at our approximation…

136



So this is great, but in case you feel those matrix multiplies and construction of an 
orthonormal basis might take too much time… I have a cheaper solution. Don’t rotate 
the SH at all, but still scale by the BRDF magnitude. Let’s compare.

137



So the colours shift, but the overall intensity stays the same. This is a pretty extreme 
example of lighting being different in the SH too, so perhaps in general cases it 
doesn’t matter so much. With scaling by the magnitude though you’re still going to 
get that falloff at glancing viewing angles for smooth surfaces which gives more 
definition to the objects, as well as having that effect on the overall luminance of the 
scene that darkening the ground plane will have.

This needs a little further research, but I hope this is a promising avenue to go down!

138



Let’s conclude by recapping where we’re at. We’ve implementing multiscattering
diffuse and specular, as well as area lights. We’ve made our BRDFs work for direct and 
indirect lighting, as well as area lighting. Wrapped lighting works in all circumstances, 
and we have an implementation of area lighting for cloth.

139



But sadly we still have the following problems left to solve. Nothing currently works
with our hair shading, and neither for subsurface scattering on skin. At least for skin 
we have a plan of using separable screen-space subsurface scattering, but hair is 
definitely in the research area.

140



So we’re now at the end of our case study. We’ve tried to take some latest research 
into new multiscattering BRDFs and area lights, and put them into our game, and it’s 
been a bit more complicated than we initially would have hoped. But hopefully this 
journey has given us a few insights that we can learn together about uniting research 
and game production.

141



The first is that source code is invaluable. Having some simple shader code for Danny 
Chan’s multiscattering diffuse model was great, as we could implement it quickly. 
Having demos for area lights with LTCs also meant I had a working version of area 
lights in the game very quickly. But perhaps even more importantly, having the fitting 
code for LTCs was utterly invaluable because when I hit a hurdle and needed to work 
with more BRDFs than just Lambert diffuse and GGX, I was able to do so very easily.

142



This leads us nicely into Takeaway #2 – separating insight from implementation. The 
thing about LTCs is not that they allow us to get a real-time result of GGX specular 
with area lights, although that’s what the demos show. The research isn’t about that 
implementation detail. The research is about the insight that we can use LTCs to 
represent any BRDF. I just used that insight further myself to use LTCs to help with 
indirect diffuse with spherical harmonics.

This is good for us all to remember when writing papers but also when reading them. 
I remember a member of my team implementing a paper about a BRDF for the moon. 
It contained a BRDF from the sun light, but it also provided a sky light model too. 
Really, the sky light model was just there to make the image the researcher was 
rendering be complete. However, my colleague implemented both the sun model and 
the sky model, completely forgetting that we already had a much better sky model in 
game that was being applied. Now, that’s the job of us in games to spot the real 
insights in paper, and to forget the peripheral information, but sometimes it’s the job 
of researchers too to ensure the key insight in their paper is what stands out, not just 
some arbitrary implementation details.

That isn’t to say we can’t have papers 100% about implementation. In some ways the 

143



Fdez-Agüera paper is a fantastic example of this – focusing on how to get something 
working in a particular case, and as a game developer I love these papers. *But* I did 
personally take the model and extended it to more use cases, looking at the insight it 
provided into other problems.

143



I guess I was building upon existing work. As was Fdez-Agüera when looking at 
multiscattering for environment lighting, or Emmanuel Turquin when developing his 
own multiscattering model. The more research we have in a given area the better! It’s 
even more important because if work is successful, we’re likely using it in games. And 
doing research to push what’s being used further really helps.

Even the concept of the environment map BRDF is something that has come up 
repeatedly. We were able to use it to get the energy of a BRDF in a given direction, 
and we also used a very similar concept to scale our LTCs. The fact that in games we 
already have some of this technology just makes implementing future papers based 
on that easier.

There is a word of caution here too. It’s looking likely that in the near future I’m going 
to be using LTCs to evaluate BRDFs, because I want to use area lights. That means if 
I’m going to implement a BRDF, I really want it to work with LTCs, otherwise I’m going 
to have a problem. Building on successful existing work also means understanding 
what’s already being used, and trying to make your research work with that. Or 
understanding that we might only come back to your research in 15 years once we’ve 
stopped doing LTCs and we’re all on ray tracing.

144



But the other benefit to building on existing work is that you might be solving 
problems that are within it. And today we hit a lot of problems.

144



Never underestimate implementation time. And that’s coming from me, who was 
initially really pleasantly surprised with how quickly I got new BRDFs plus area lights 
into the game. Then I realised all the cases that I was missing. The skin, the hair, the 
cloth. How the new BRDFs didn’t necessarily play nicely with the area lights, and that 
those two strands of research were pretty independent that I had to try to unite. Still, 
there’s much more work to do – I need to implement a whole new technique for skin 
shading, check that it’s performant, and discover a solution for hair.

I say this to many people – to artists and producers I work with, to hardware 
manufacturers wanting us to implement their latest feature, to academics wanting us 
to implement their research, and to graphics programmers trying to get the latest 
feature into their engine. It often takes a lot longer than you think. Sure, the initial 
implementation might be simple, it might not take that much time. But I like to think 
that this is one of those 80:20 rules. The last 20% of the work very definitely takes 
80% of the time, because our engines are incredibly complex and features don’t 
always play nicely together.

145



Thank you all for listening. A particular thanks to the I3D committee for inviting me to 
speak, everyone who’s research inspired everything presented here, Eric Heitz and 
Jorge Jimenez for letting me use their pictures and diagrams, and finally Natalya 
Tatarchuk and Ulrich Haar for reviewing my slides. I hope you learned something 
about implementing research and rendering advances into game productions, and I 
hope those of you who are visiting Montreal enjoy our city. Have a great rest of the 
conference!

146



147


