
Rendering Decals and Many Lights with Ray Tracing Acceleration
Structures

Sidney Hansen
sidney.hansen@student.kit.edu

Karlsruhe Institute of Technology
Karlsruhe, Germany

Christoph Peters
christoph.peters@kit.edu

Karlsruhe Institute of Technology
Karlsruhe, Germany

Figure 1: Left: The bistro with decals. Right: Emerald Square with 15k lights. The regions of influence are axis-aligned bounding
boxes (AABBs) in an acceleration structure (right half). By tracing zero-length rays, we enumerate relevant decals and lights.

ABSTRACT
Methods for rendering decals and local light sources often rely
on rasterising bounding volumes. While beeing efficient, this only
works in deferred shading. We propose a new approach, that makes
use of ray-tracing acceleration structures. The core problem is the
enumeration of decals and lights with overlapping regions of influ-
ence per shading point. Thus, we build an acceleration structure
with one axis-aligned bounding box per decal or light. We trace a
zero-length ray from the shading point such that any hit yields a
relevant decal or light. Our approach is more costly but also more
widely applicable than classic deferred shading techniques.

CCS CONCEPTS
• Computing methodologies→ Texturing; Ray tracing.

KEYWORDS
Decals, many lights, real-time rendering, ray tracing, ray query,
nearest neighbors, deferred decals, visibility buffers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
i3D 2021 posters, 20-22 April 2021, online
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/none

ACM Reference Format:
Sidney Hansen and Christoph Peters. 2021. Rendering Decals and Many
Lights with Ray Tracing Acceleration Structures. In Proceedings of 25th
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (i3D 2021
posters). ACM, New York, NY, USA, 2 pages. https://doi.org/none

1 INTRODUCTION
Decals and local light sources are widely used in real-time rendering.
Their use is particularly efficient in deferred rendering. A simple
way to apply them is to rasterize bounding volumes for their regions
of influence, e.g. a box for decals or a low-poly sphere for point
lights. The fragment shader for decals then samples decal textures
and blends themwith the g-buffer [Kim, 2012]. For lights, it samples
the g-buffer, computes shading and adds it to the framebuffer.

This approach is fast but not particularly flexible. For decals,
it requires a complete g-buffer. Alternatives like visibility buffers
[Burns and Hunt, 2013] are not supported. Transparent surfaces and
surfaces in ray-traced reflections are also problematic. For forward
rendering with depth prepass, there are alternatives such as tiled
and clustered shading where a 2D or 3D grid holds lists of decals
or lights per cell [Olsson et al., 2012]. However, these grids fail
for ray-traced reflections because they usually only cover the view
frustum.

Our approach can apply decals or shading with many lights
directly to a given shading point anywhere in the scene and in
any shader stage. Instead of regular grids, we leverage hardware-
acceleration for ray tracing. The method is more costly than de-
ferred decals but also far more flexible.

https://doi.org/none
https://doi.org/none

i3D 2021 posters, 20-22 April 2021, online Sidney Hansen and Christoph Peters

Figure 2: Decals project onto surfaces within oriented bound-
ing boxes (OBBs). We create acceleration structures with
AABBs and trace zero-length rays to enumerate all relevant
decals for a given shading point.

2 ENUMERATION AND BLENDING OF
DECALS AND MANY LIGHTS

Bottom-level acceleration structures (BLAS) either hold triangles
or AABBs. While AABBs are originally meant to be used with
intersection shaders, we repurpose them for decals and lights. A
decal affects all surfaces within an OBB (Fig. 2) whereas a point
light has a sphere of influence. From these regions, we construct
one AABB per decal and light. All AABBs go into BLASs. We can
combine multiple BLASs in a single top-level acceleration structure
(TLAS), which facilitates instancing and rigid animations. Decals
and lights use separate TLASs.

Parameters and texture descriptors for decals and lights are
packed into large arrays that we access during shading with the
index of the AABB. In order to apply decals and compute lightingwe
have to enumerate all overlapping decals and light sources during
the shading pass. To this end, we use ray queries in a fragment
shader. We trace a ray of length zero starting at the position of the
fragment (Fig. 2). Any hit means that one of the AABBs overlaps
the shading point. In that case, we immediately use its index to
retrieve its attributes from the array. We proceed to check if the
fragment is contained in the tighter bounding volume. If so, we
perform shading for light sources.

For a decal, we sample its textures. As with deferred decals, we
have to compute derivatives of texture coordinates manually by
transforming screen space derivatives of the world space position.
With visibility buffers, that causes mipmapping errors at depth
discontinuities. Deferred decals are prone to the same issue.

The order in which our approach enumerates decals is arbitrary.
Thus, to combine overlapping decals we use different weights𝑤𝑖

and layers. To place a decal on top of others, this decal can be
assigned a higher layer. These layers are then blended from bottom
to top. If multiple decals are asigned to one layer, they are blended,
based on their weight. For this we use weighted-blended order
independent transparency (OIT) [McGuire and Bavoil, 2013]. For
each attribute 𝑐0 of the shading data (albedo, normal, roughness or
metallicity), we compute the blended attribute by∑𝑛

𝑖=1 𝑐𝑖𝛼𝑖𝑤𝑖∑𝑛
𝑖=1 𝛼𝑖𝑤𝑖

(1 −
𝑛∏
𝑖=1

(1 − 𝛼𝑖)) + 𝑐0
𝑛∏
𝑖=1

(1 − 𝛼𝑖) .

The attribute value 𝑐𝑖 comes from the decal textures, just like the
opacity 𝛼𝑖 . This approach lets us handle any number of overlapping
decals, while giving us flexibility, in cases where weighted-blended
OIT produces unnatural results.

Table 1: Total frame time in ms

Nr Scene Decals Local lights
1. Sun temple 6 large 0
2. Bistro 100 small 0
3. Emerald square 100k small 0
4. Emerald square 0 28k small

Forward Off Ours
1. 0.75 1.20
2. 2.90 3.06
3. 5.1 16.0
4. - 27.8

Vis. buffer Off Ours
1 0.65 0.99
2 1.95 2.07
3 2.7 5.0
4 - 10.8

Deferred Off Deferred Decals Ours
1. 0.74 0.89 1.16
2. 2.18 2.30 2.32
3. 3.1 5.5 6.4

3 RESULTS
For evaluation, we run our renderer on an NVIDIA RTX 2070 Super.
Our technique uses the VK_KHR_ray_tracing extension. Figure 1
demonstrates that our method can faithfully handle many decals
and lights. Table 1 provides timings to assess the overhead of our
approach and to compare it to deferred decals. We use forward
rendering with depth prepass, deferred rendering with a 112-bit
g-buffer and deferred rendering with a 32-bit visibility buffer [Burns
and Hunt, 2013].

With a low number of decals, all variants have amodest overhead.
As we push towards tens of thousands of lights or decals, the cost of
our method or deferred decals dominates the frame time, especially
in forward rendering, but rendering remains highly interactive.
Deferred decals are usually faster than our method.

Thus, our approach is not attractive as replacement for deferred
decals at this time. However, it is compelling in situations where
deferred decals are not applicable, especially with visibility buffers
or ray tracing. A direct comparison to clustered shading would be
interesting future work. The source code of our renderer is available
on github: https://github.com/scratlantis/vulkan-renderer

ACKNOWLEDGMENTS
The Emerald Square was created by Nicholas Hull for NVIDIA. The
bistro and sun temple were donated by Amazon Lumberyard and
Epic Games, respectively. Parts of our Vulkan renderer are based
on examples by Sascha Wilhelms.

REFERENCES
Christopher A. Burns and Warren A. Hunt. The visibility buffer: a cache-friendly

approach to deferred shading. Journal of Computer Graphics Techniques (JCGT), 2
(2):55–69, 2013.

Pope Kim. Screen space decals in warhammer 40,000: Space marine. InACM SIGGRAPH
2012 Talks, SIGGRAPH ’12, New York, NY, USA, 2012. Association for Computing
Machinery. ISBN 9781450316835. doi: 10.1145/2343045.2343053. URL https://doi.
org/10.1145/2343045.2343053.

Morgan McGuire and Louis Bavoil. Weighted blended order-independent transparency.
Journal of Computer Graphics Techniques (JCGT), 2(2):122–141, December 2013.
ISSN 2331-7418. URL http://jcgt.org/published/0002/02/09/.

Ola Olsson, Markus Billeter, and Ulf Assarsson. Clustered deferred and forward
shading. In Proceedings of the Fourth ACM SIGGRAPH/Eurographics conference on
High-Performance Graphics, pages 87–96, 2012.

https://developer.nvidia.com/orca/nvidia-emerald-square
https://developer.nvidia.com/orca/amazon-lumberyard-bistro
https://developer.nvidia.com/ue4-sun-temple
https://github.com/SaschaWillems/Vulkan
https://doi.org/10.1145/2343045.2343053
https://doi.org/10.1145/2343045.2343053
http://jcgt.org/published/0002/02/09/

	Abstract
	1 Introduction
	2 Enumeration and Blending of Decals and Many Lights
	3 Results
	Acknowledgments
	References

