
• Intersect 0-length rays
with bounding volumes

• Enumerate decals per
shading point

• Independent of
shading technique

• Blending decals works
• Handles decals / lights

outside view frustrum
• Ray tracing required

• Cut out and duplicate
surface geometry

• Apply decal to copy

• Independent of
shading technique

• Blending difficult
• Cutting out &

duplicating geometry
required

• Z-fighting

• We use ray queries to trace zero-length rays from the fragment position
• Decal AABBs are stored in a ray tracing acceleration structure
• Any hit means a decal overlaps the shading point
• The same method works for light volumes
• Textures and other data are stored in buffers and accesed via index
• Sampling decal textures works the same way as with other techniques

• Problem: The order of the enumeration is arbitrary
• For blending decals, we use a variation of weighted-blended order independent

transparency (OIT)[3] using user defined layers and weights
• Weights: used to determine the influence of the decal, when blending with

other decals of the same layer
• Layers: used to accumulate the weighted attributes of decals belonging to the

same layer and are then blended in a fixed order using alpha blending
• Light accumulation is order-independent anyway

Comparision to deferred decals

1. Kim, Pope. "Screen space decals in warhammer 40,000: Space

marine." ACM SIGGRAPH 2012 Talks. 2012. 1-1.
https://doi.org/10.1145/2343045.2343053

2. Olsson, Ola, Markus Billeter, and Ulf Assarsson. "Clustered

deferred and forward shading." Proceedings of the Fourth ACM

SIGGRAPH/Eurographics conference on High-Performance

Graphics. 2012.https://dl.acm.org/doi/10.5555/2383795.2383809

3. McGuire, Morgan, and Louis Bavoil. "Weighted blended order-

independent transparency." Journal of Computer Graphics
Techniques 2.4 (2013). http://jcgt.org/published/0002/02/09/

4. Burns, Christopher A., and Warren A. Hunt. "The visibility buffer: a

cache-friendly approach to deferred shading." Journal of Computer

Graphics Techniques (JCGT) 2.2 (2013): 55-
69.http://jcgt.org/published/0002/02/04/

• Rasterize bounding
volume

• Apply decal to g-buffer
inside fragment shader

• Performance
• Blending decals works
• Works only in deferred

shading
• Limited to view frustrum

• Intersect bounding
volume with grid

• List of decals per cell
• Apply decals in fragment

shader

• Works well alongside
lights

• Blending decals works
• Fixed grid size
• Limited to view frustrum

Rendering Decals and Many Lights with Ray Tracing Acceleration Structures
Sidney Hansen sidney.hansen@student.kit.edu Christoph Peters christoph.peters@kit.edu

Mesh
decals:

Deferred
decals[1]:

Decals in
clustered
shading[2]:

Decal rendering methods

Our method

Similar to clustered shading our method works by enumerating decals (and light
sources) inside a loop in the fragment shader.

0

1

2

3

4

5

6

7

6 Large decals
Sun Temple

100 Small decals
Bistro

100k Small decals
Emerald square

Decals (with deferred shading)

Decals off

Deferred decals

Our decals

0

5

10

15

20

25

30

35

300 Lights 3000 Lights 10k Lights 100k Lights

Lights (with visibility buffer)

Very Low Intensity

Low Intensity (x10)

Medium Intensity (x100)

Performance:
• Overall lower perfomance than deferred decals
• Overhead increases for large decals / lights
• Scales well with high numbers of small decals / lights

Flexibility:
• Independent of shading technique
• Works with ray traced reflections
• Supports multi decal blending
• Ray tracing required

Blending

• Evaluation with ray tracing (not only reflections)
• Comparision with clustered shading
• Implementation in dynamic setting
Source code: https://github.com/scratlantis/vulkan-renderer

Frametime (in ms) captured on an RTX 2070 SUPER at
a resolution of 1920x1017 pixels:

Results

Pure weighted-
blended OIT

Alpha blendingOurs

Conclusion

Future Work

References

OursDeferred decals

Many lights

False positives with shallow angle:

Ours:

Bistro scene, rendered with 10k low intensity local point lights (ours). Shading
technique: visibilitiy buffer

Floor of sun temple scene, rendered with decals and local point lights (ours). Shading technique: forward with depth prepass

Bistro scene, rendered with decals and local point lights (ours). Shading technique: visibilitiy buffer[4] with ray traced reflections

False positives with steep angle:

OursDeferred decals

https://github.com/scratlantis/vulkan-renderer

